Spaces:
Sleeping
Sleeping
File size: 5,628 Bytes
d0ba755 4d5736b d0ba755 4d5736b d0ba755 299f87b d0ba755 f90da5a d0ba755 c6f8f84 d0ba755 4d5736b d0ba755 4d5736b d0ba755 3bcec19 4d5736b fc6e44c 4d5736b fc6e44c 4d5736b fc6e44c 4d5736b d0ba755 4d5736b d0ba755 4d5736b c6f8f84 4d5736b d0ba755 4d5736b d0ba755 3bcec19 d0ba755 80fe36a d0ba755 3bcec19 132ef2d d0ba755 132ef2d 80fe36a d0ba755 132ef2d 4d5736b 000034c d0ba755 4d5736b d0ba755 c6f8f84 4d5736b f90da5a c6f8f84 3bcec19 fc6e44c 3bcec19 fc6e44c 3bcec19 c6f8f84 d0ba755 f90da5a 255d19f 4d5736b 3bcec19 255d19f f90da5a 4d5736b f90da5a d0ba755 a6c8097 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# app.py
# -------------------------------
# 1. 套件載入
# -------------------------------
import os, glob, requests
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from docx import Document as DocxDocument
import gradio as gr
# -------------------------------
# 2. 環境變數與資料路徑
# -------------------------------
TXT_FOLDER = "./out_texts"
DB_PATH = "./faiss_db"
os.makedirs(DB_PATH, exist_ok=True)
os.makedirs(TXT_FOLDER, exist_ok=True)
HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
if not HF_TOKEN:
raise ValueError(
"請在 Hugging Face Space 的 Settings → Repository secrets 設定 HUGGINGFACEHUB_API_TOKEN"
)
# -------------------------------
# 3. 建立或載入向量資料庫
# -------------------------------
EMBEDDINGS_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
embeddings_model = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
if os.path.exists(os.path.join(DB_PATH, "index.faiss")):
print("載入現有向量資料庫...")
db = FAISS.load_local(DB_PATH, embeddings_model, allow_dangerous_deserialization=True)
else:
print("沒有資料庫,開始建立新向量資料庫...")
txt_files = glob.glob(f"{TXT_FOLDER}/*.txt")
if not txt_files:
print("注意:TXT 資料夾中沒有任何文字檔,向量資料庫將為空。")
docs = []
for filepath in txt_files:
with open(filepath, "r", encoding="utf-8") as f:
docs.append(Document(page_content=f.read(), metadata={"source": os.path.basename(filepath)}))
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
split_docs = splitter.split_documents(docs)
db = FAISS.from_documents(split_docs, embeddings_model)
db.save_local(DB_PATH)
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5})
# -------------------------------
# 4. 定義 REST API 呼叫函數
# -------------------------------
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
def call_hf_inference(model_name, prompt, max_new_tokens=512):
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
payload = {
"inputs": prompt,
"parameters": {"max_new_tokens": max_new_tokens}
}
try:
response = requests.post(api_url, headers=HEADERS, json=payload, timeout=180) # timeout 拉長
response.raise_for_status()
data = response.json()
if isinstance(data, list) and "generated_text" in data[0]:
return data[0]["generated_text"]
elif isinstance(data, dict) and "error" in data:
return f"(生成失敗:{data['error']},請嘗試換一個模型)"
else:
return str(data)
except requests.exceptions.ReadTimeout:
return "(生成失敗:等待超時,請嘗試換小一點的模型或增加 timeout 秒數)"
except Exception as e:
return f"(生成失敗:{e})"
# -------------------------------
# 5. 查詢 API 剩餘額度
# -------------------------------
def get_hf_rate_limit():
try:
r = requests.get("https://huggingface.co/api/whoami", headers=HEADERS)
r.raise_for_status()
data = r.json()
remaining = data.get("rate_limit", {}).get("remaining", "未知")
return f"本小時剩餘 API 次數:約 {remaining}"
except Exception:
return "無法取得 API 速率資訊"
# -------------------------------
# 6. 生成文章(即時進度)
# -------------------------------
def generate_article_progress(query, model_name, segments=5):
docx_file = "/tmp/generated_article.docx"
doc = DocxDocument()
doc.add_heading(query, level=1)
all_text = []
prompt = f"請依據下列主題生成段落:{query}\n\n每段約150-200字。"
for i in range(int(segments)):
paragraph = call_hf_inference(model_name, prompt)
all_text.append(paragraph)
doc.add_paragraph(paragraph)
prompt = f"請接續上一段生成下一段:\n{paragraph}\n\n下一段:"
yield "\n\n".join(all_text), None
doc.save(docx_file)
rate_info = get_hf_rate_limit()
yield f"{rate_info}\n\n" + "\n\n".join(all_text), docx_file
# -------------------------------
# 7. Gradio 介面
# -------------------------------
with gr.Blocks() as demo:
gr.Markdown("# 佛教經論 RAG 系統 (HF API)")
gr.Markdown("使用 Hugging Face REST API + FAISS RAG,生成文章並提示 API 剩餘額度。")
query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題")
model_dropdown = gr.Dropdown(
choices=[
"gpt2",
"facebook/bart-large-cnn",
"bigscience/bloom-560m",
"bigscience/bloomz-560m"
],
value="bigscience/bloomz-560m", # 預設比較聽得懂指令
label="選擇生成模型"
)
segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="段落數")
output_text = gr.Textbox(label="生成文章 + API 剩餘次數")
output_file = gr.File(label="下載 DOCX")
btn = gr.Button("生成文章")
btn.click(
generate_article_progress,
inputs=[query_input, model_dropdown, segments_input],
outputs=[output_text, output_file]
)
# -------------------------------
# 8. 啟動 Gradio(Hugging Face Space 適用)
# -------------------------------
if __name__ == "__main__":
demo.launch()
|