RAG_Test_System / app.py
CHUNYU0505's picture
Update app.py
052f25a verified
# app.py
import os, torch
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from docx import Document as DocxDocument
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from huggingface_hub import login, snapshot_download
import gradio as gr
# -------------------------------
# 1. 模型設定(專門中文,T5)
# -------------------------------
MODEL_NAME = "Langboat/mengzi-t5-base" # ✅ CPU 也能跑的中文 T5
LOCAL_MODEL_DIR = f"./models/{MODEL_NAME.split('/')[-1]}"
HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
print("✅ 已使用 HUGGINGFACEHUB_API_TOKEN 登入 Hugging Face")
if not os.path.exists(LOCAL_MODEL_DIR):
print(f"⬇️ 嘗試下載模型 {MODEL_NAME} ...")
snapshot_download(repo_id=MODEL_NAME, token=HF_TOKEN, local_dir=LOCAL_MODEL_DIR)
print(f"👉 最終使用模型:{MODEL_NAME}")
# -------------------------------
# 2. 載入 tokenizer + model
# -------------------------------
tokenizer = AutoTokenizer.from_pretrained(LOCAL_MODEL_DIR)
model = AutoModelForSeq2SeqLM.from_pretrained(LOCAL_MODEL_DIR, device_map="cpu")
# -------------------------------
# 3. 向量資料庫載入
# -------------------------------
EMBEDDINGS_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
embeddings_model = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
if os.path.exists("./faiss_db/index.faiss"):
print("✅ 載入現有向量資料庫...")
db = FAISS.load_local("./faiss_db", embeddings_model, allow_dangerous_deserialization=True)
else:
print("⚠️ 找不到向量資料庫,請先建立")
db = None
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5}) if db else None
# -------------------------------
# 4. 改良推理函數(避免重複亂碼)
# -------------------------------
def call_local_inference(prompt, max_new_tokens=256):
try:
inputs = tokenizer(prompt, return_tensors="pt", truncation=True).to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=False, # ❌ 關掉隨機
num_beams=4, # ✅ 用 beam search
repetition_penalty=1.2, # ✅ 懲罰重複
length_penalty=1.0,
early_stopping=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
return f"(生成失敗:{e})"
# -------------------------------
# 5. 文章生成(加入 RAG)
# -------------------------------
def generate_article_progress(query, segments=5):
docx_file = "/tmp/generated_article.docx"
doc = DocxDocument()
doc.add_heading(query, level=1)
all_text = []
context = ""
if retriever:
retrieved_docs = retriever.get_relevant_documents(query)
context_texts = [d.page_content for d in retrieved_docs]
context = "\n".join([f"{i+1}. {txt}" for i, txt in enumerate(context_texts[:3])])
for i in range(segments):
prompt = (
f"請基於以下資料,撰寫一段中文文章:\n"
f"主題:{query}\n"
f"要求:字數約150~200字,內容要有完整句子,不要重複詞語。\n\n"
f"參考資料:\n{context}\n\n"
f"第{i+1}段:"
)
paragraph = call_local_inference(prompt)
all_text.append(paragraph)
doc.add_paragraph(paragraph)
yield "\n\n".join(all_text), None, f"本次使用模型:{MODEL_NAME}"
doc.save(docx_file)
yield "\n\n".join(all_text), docx_file, f"本次使用模型:{MODEL_NAME}"
# -------------------------------
# 6. Gradio 介面
# -------------------------------
with gr.Blocks() as demo:
gr.Markdown("# 📺 電視弘法視頻生成文章 RAG 系統")
gr.Markdown("基於向量資料庫 + 中文 T5 模型,自動生成主題文章")
query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題")
segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=3, label="段落數")
output_text = gr.Textbox(label="生成文章")
output_file = gr.File(label="下載 DOCX")
model_info = gr.Textbox(label="模型資訊")
btn = gr.Button("生成文章")
btn.click(
generate_article_progress,
inputs=[query_input, segments_input],
outputs=[output_text, output_file, model_info]
)
if __name__ == "__main__":
demo.launch()