Spaces:
Sleeping
Sleeping
| # app.py | |
| import os, torch | |
| from langchain.docstore.document import Document | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain_community.vectorstores import FAISS | |
| from langchain_huggingface import HuggingFaceEmbeddings | |
| from docx import Document as DocxDocument | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| from huggingface_hub import login, snapshot_download | |
| import gradio as gr | |
| # ------------------------------- | |
| # 1. 模型設定(專門中文,T5) | |
| # ------------------------------- | |
| MODEL_NAME = "Langboat/mengzi-t5-base" # ✅ CPU 也能跑的中文 T5 | |
| LOCAL_MODEL_DIR = f"./models/{MODEL_NAME.split('/')[-1]}" | |
| HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN") | |
| if HF_TOKEN: | |
| login(token=HF_TOKEN) | |
| print("✅ 已使用 HUGGINGFACEHUB_API_TOKEN 登入 Hugging Face") | |
| if not os.path.exists(LOCAL_MODEL_DIR): | |
| print(f"⬇️ 嘗試下載模型 {MODEL_NAME} ...") | |
| snapshot_download(repo_id=MODEL_NAME, token=HF_TOKEN, local_dir=LOCAL_MODEL_DIR) | |
| print(f"👉 最終使用模型:{MODEL_NAME}") | |
| # ------------------------------- | |
| # 2. 載入 tokenizer + model | |
| # ------------------------------- | |
| tokenizer = AutoTokenizer.from_pretrained(LOCAL_MODEL_DIR) | |
| model = AutoModelForSeq2SeqLM.from_pretrained(LOCAL_MODEL_DIR, device_map="cpu") | |
| # ------------------------------- | |
| # 3. 向量資料庫載入 | |
| # ------------------------------- | |
| EMBEDDINGS_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" | |
| embeddings_model = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME) | |
| if os.path.exists("./faiss_db/index.faiss"): | |
| print("✅ 載入現有向量資料庫...") | |
| db = FAISS.load_local("./faiss_db", embeddings_model, allow_dangerous_deserialization=True) | |
| else: | |
| print("⚠️ 找不到向量資料庫,請先建立") | |
| db = None | |
| retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5}) if db else None | |
| # ------------------------------- | |
| # 4. 改良推理函數(避免重複亂碼) | |
| # ------------------------------- | |
| def call_local_inference(prompt, max_new_tokens=256): | |
| try: | |
| inputs = tokenizer(prompt, return_tensors="pt", truncation=True).to(model.device) | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=False, # ❌ 關掉隨機 | |
| num_beams=4, # ✅ 用 beam search | |
| repetition_penalty=1.2, # ✅ 懲罰重複 | |
| length_penalty=1.0, | |
| early_stopping=True | |
| ) | |
| return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| except Exception as e: | |
| return f"(生成失敗:{e})" | |
| # ------------------------------- | |
| # 5. 文章生成(加入 RAG) | |
| # ------------------------------- | |
| def generate_article_progress(query, segments=5): | |
| docx_file = "/tmp/generated_article.docx" | |
| doc = DocxDocument() | |
| doc.add_heading(query, level=1) | |
| all_text = [] | |
| context = "" | |
| if retriever: | |
| retrieved_docs = retriever.get_relevant_documents(query) | |
| context_texts = [d.page_content for d in retrieved_docs] | |
| context = "\n".join([f"{i+1}. {txt}" for i, txt in enumerate(context_texts[:3])]) | |
| for i in range(segments): | |
| prompt = ( | |
| f"請基於以下資料,撰寫一段中文文章:\n" | |
| f"主題:{query}\n" | |
| f"要求:字數約150~200字,內容要有完整句子,不要重複詞語。\n\n" | |
| f"參考資料:\n{context}\n\n" | |
| f"第{i+1}段:" | |
| ) | |
| paragraph = call_local_inference(prompt) | |
| all_text.append(paragraph) | |
| doc.add_paragraph(paragraph) | |
| yield "\n\n".join(all_text), None, f"本次使用模型:{MODEL_NAME}" | |
| doc.save(docx_file) | |
| yield "\n\n".join(all_text), docx_file, f"本次使用模型:{MODEL_NAME}" | |
| # ------------------------------- | |
| # 6. Gradio 介面 | |
| # ------------------------------- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# 📺 電視弘法視頻生成文章 RAG 系統") | |
| gr.Markdown("基於向量資料庫 + 中文 T5 模型,自動生成主題文章") | |
| query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題") | |
| segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=3, label="段落數") | |
| output_text = gr.Textbox(label="生成文章") | |
| output_file = gr.File(label="下載 DOCX") | |
| model_info = gr.Textbox(label="模型資訊") | |
| btn = gr.Button("生成文章") | |
| btn.click( | |
| generate_article_progress, | |
| inputs=[query_input, segments_input], | |
| outputs=[output_text, output_file, model_info] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |