Spaces:
Sleeping
Sleeping
File size: 4,715 Bytes
058eba2 8f7234f d051231 052f25a d051231 1740855 052f25a d051231 052f25a 9c1b3ba d051231 052f25a d051231 06f5c87 052f25a 06f5c87 6d8dd36 052f25a d051231 052f25a 06f5c87 052f25a 06f5c87 052f25a 06f5c87 052f25a 6d8dd36 8f7234f 052f25a 06f5c87 052f25a d0ba755 6d8dd36 d0ba755 6f0de2e 6d8dd36 80fe36a 06f5c87 6f0de2e 052f25a 6f0de2e 052f25a a23ab36 132ef2d 06f5c87 052f25a 6d8dd36 6f0de2e 06f5c87 6d8dd36 80fe36a d0ba755 052f25a d0ba755 c6f8f84 06f5c87 052f25a 058eba2 c6f8f84 052f25a fb13185 c6f8f84 052f25a d0ba755 f90da5a 255d19f 06f5c87 a23ab36 6d8dd36 255d19f f90da5a d0ba755 a6c8097 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
# app.py
import os, torch
from langchain.docstore.document import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from docx import Document as DocxDocument
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from huggingface_hub import login, snapshot_download
import gradio as gr
# -------------------------------
# 1. 模型設定(專門中文,T5)
# -------------------------------
MODEL_NAME = "Langboat/mengzi-t5-base" # ✅ CPU 也能跑的中文 T5
LOCAL_MODEL_DIR = f"./models/{MODEL_NAME.split('/')[-1]}"
HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
print("✅ 已使用 HUGGINGFACEHUB_API_TOKEN 登入 Hugging Face")
if not os.path.exists(LOCAL_MODEL_DIR):
print(f"⬇️ 嘗試下載模型 {MODEL_NAME} ...")
snapshot_download(repo_id=MODEL_NAME, token=HF_TOKEN, local_dir=LOCAL_MODEL_DIR)
print(f"👉 最終使用模型:{MODEL_NAME}")
# -------------------------------
# 2. 載入 tokenizer + model
# -------------------------------
tokenizer = AutoTokenizer.from_pretrained(LOCAL_MODEL_DIR)
model = AutoModelForSeq2SeqLM.from_pretrained(LOCAL_MODEL_DIR, device_map="cpu")
# -------------------------------
# 3. 向量資料庫載入
# -------------------------------
EMBEDDINGS_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
embeddings_model = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
if os.path.exists("./faiss_db/index.faiss"):
print("✅ 載入現有向量資料庫...")
db = FAISS.load_local("./faiss_db", embeddings_model, allow_dangerous_deserialization=True)
else:
print("⚠️ 找不到向量資料庫,請先建立")
db = None
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 5}) if db else None
# -------------------------------
# 4. 改良推理函數(避免重複亂碼)
# -------------------------------
def call_local_inference(prompt, max_new_tokens=256):
try:
inputs = tokenizer(prompt, return_tensors="pt", truncation=True).to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=False, # ❌ 關掉隨機
num_beams=4, # ✅ 用 beam search
repetition_penalty=1.2, # ✅ 懲罰重複
length_penalty=1.0,
early_stopping=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
return f"(生成失敗:{e})"
# -------------------------------
# 5. 文章生成(加入 RAG)
# -------------------------------
def generate_article_progress(query, segments=5):
docx_file = "/tmp/generated_article.docx"
doc = DocxDocument()
doc.add_heading(query, level=1)
all_text = []
context = ""
if retriever:
retrieved_docs = retriever.get_relevant_documents(query)
context_texts = [d.page_content for d in retrieved_docs]
context = "\n".join([f"{i+1}. {txt}" for i, txt in enumerate(context_texts[:3])])
for i in range(segments):
prompt = (
f"請基於以下資料,撰寫一段中文文章:\n"
f"主題:{query}\n"
f"要求:字數約150~200字,內容要有完整句子,不要重複詞語。\n\n"
f"參考資料:\n{context}\n\n"
f"第{i+1}段:"
)
paragraph = call_local_inference(prompt)
all_text.append(paragraph)
doc.add_paragraph(paragraph)
yield "\n\n".join(all_text), None, f"本次使用模型:{MODEL_NAME}"
doc.save(docx_file)
yield "\n\n".join(all_text), docx_file, f"本次使用模型:{MODEL_NAME}"
# -------------------------------
# 6. Gradio 介面
# -------------------------------
with gr.Blocks() as demo:
gr.Markdown("# 📺 電視弘法視頻生成文章 RAG 系統")
gr.Markdown("基於向量資料庫 + 中文 T5 模型,自動生成主題文章")
query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題")
segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=3, label="段落數")
output_text = gr.Textbox(label="生成文章")
output_file = gr.File(label="下載 DOCX")
model_info = gr.Textbox(label="模型資訊")
btn = gr.Button("生成文章")
btn.click(
generate_article_progress,
inputs=[query_input, segments_input],
outputs=[output_text, output_file, model_info]
)
if __name__ == "__main__":
demo.launch()
|