Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,14 +10,9 @@ from huggingface_hub import login, snapshot_download
|
|
| 10 |
import gradio as gr
|
| 11 |
|
| 12 |
# -------------------------------
|
| 13 |
-
# 1.
|
| 14 |
# -------------------------------
|
| 15 |
-
|
| 16 |
-
"Auto": None,
|
| 17 |
-
"BTLM-3B-8K": "cerebras/btlm-3b-8k-base",
|
| 18 |
-
"GPT2-Chinese": "uer/gpt2-chinese-cluecorpusmedium", # 中文 GPT2
|
| 19 |
-
"BART-Base": "facebook/bart-base"
|
| 20 |
-
}
|
| 21 |
|
| 22 |
HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
| 23 |
if HF_TOKEN:
|
|
@@ -25,57 +20,35 @@ if HF_TOKEN:
|
|
| 25 |
print("✅ 已使用 HUGGINGFACEHUB_API_TOKEN 登入 Hugging Face")
|
| 26 |
|
| 27 |
# -------------------------------
|
| 28 |
-
# 2.
|
| 29 |
# -------------------------------
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
try:
|
| 35 |
-
local_dir = f"./models/{repo.split('/')[-1]}"
|
| 36 |
-
if not os.path.exists(local_dir):
|
| 37 |
-
print(f"⬇️ 正在下載模型 {repo} ...")
|
| 38 |
-
snapshot_download(repo_id=repo, token=HF_TOKEN, local_dir=local_dir)
|
| 39 |
-
LOCAL_MODEL_DIRS[name] = local_dir
|
| 40 |
-
except Exception as e:
|
| 41 |
-
print(f"⚠️ 模型 {repo} 無法下載: {e}")
|
| 42 |
|
| 43 |
# -------------------------------
|
| 44 |
# 3. pipeline 載入
|
| 45 |
# -------------------------------
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 63 |
-
|
| 64 |
-
generator = pipeline(
|
| 65 |
-
"text-generation",
|
| 66 |
-
model=model,
|
| 67 |
-
tokenizer=tokenizer,
|
| 68 |
-
device=-1 # CPU
|
| 69 |
-
)
|
| 70 |
-
_loaded_pipelines[model_name] = generator
|
| 71 |
-
return _loaded_pipelines[model_name]
|
| 72 |
-
|
| 73 |
-
def call_local_inference(model_name, prompt, max_new_tokens=256):
|
| 74 |
try:
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
# ✅ 強制中文模式:補上提示
|
| 78 |
-
if "中文" not in prompt and "Chinese" not in prompt:
|
| 79 |
prompt += "\n(請用中文回答)"
|
| 80 |
|
| 81 |
outputs = generator(
|
|
@@ -83,55 +56,41 @@ def call_local_inference(model_name, prompt, max_new_tokens=256):
|
|
| 83 |
max_new_tokens=max_new_tokens,
|
| 84 |
do_sample=True,
|
| 85 |
temperature=0.7,
|
| 86 |
-
pad_token_id=
|
| 87 |
)
|
| 88 |
return outputs[0]["generated_text"]
|
| 89 |
except Exception as e:
|
| 90 |
return f"(生成失敗:{e})"
|
| 91 |
|
| 92 |
# -------------------------------
|
| 93 |
-
# 4.
|
| 94 |
# -------------------------------
|
| 95 |
-
def
|
| 96 |
-
if segments <= 3:
|
| 97 |
-
return "GPT2-Chinese" # 短文 → 中文 GPT2
|
| 98 |
-
elif segments <= 6:
|
| 99 |
-
return "BTLM-3B-8K"
|
| 100 |
-
else:
|
| 101 |
-
return "BART-Base"
|
| 102 |
-
|
| 103 |
-
def generate_article_progress(query, model_name, segments=5):
|
| 104 |
docx_file = "/tmp/generated_article.docx"
|
| 105 |
doc = DocxDocument()
|
| 106 |
doc.add_heading(query, level=1)
|
| 107 |
|
| 108 |
-
selected_model = pick_model_auto(segments) if model_name == "Auto" else model_name
|
| 109 |
-
print(f"👉 使用模型: {selected_model}")
|
| 110 |
-
|
| 111 |
all_text = []
|
| 112 |
base_prompt = f"請依據下列主題生成一篇中文文章,主題:{query}\n每段約150-200字。\n"
|
| 113 |
|
| 114 |
for i in range(segments):
|
| 115 |
-
# ✅ 每段獨立生成
|
| 116 |
prompt = base_prompt + f"第{i+1}段:"
|
| 117 |
-
paragraph = call_local_inference(
|
| 118 |
all_text.append(paragraph)
|
| 119 |
doc.add_paragraph(paragraph)
|
| 120 |
-
|
| 121 |
-
yield "\n\n".join(all_text), None, f"本次使用模型:{selected_model}"
|
| 122 |
|
| 123 |
doc.save(docx_file)
|
| 124 |
-
yield "\n\n".join(all_text), docx_file, f"本次使用模型:{
|
| 125 |
|
| 126 |
# -------------------------------
|
| 127 |
# 5. Gradio 介面
|
| 128 |
# -------------------------------
|
| 129 |
with gr.Blocks() as demo:
|
| 130 |
gr.Markdown("# 📺 電視弘法視頻生成文章RAG系統")
|
| 131 |
-
gr.Markdown("
|
| 132 |
|
| 133 |
query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題")
|
| 134 |
-
model_dropdown = gr.Dropdown(choices=list(MODEL_MAP.keys()), value="Auto", label="選擇生成模型")
|
| 135 |
segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="段落數")
|
| 136 |
output_text = gr.Textbox(label="生成文章")
|
| 137 |
output_file = gr.File(label="下載 DOCX")
|
|
@@ -140,7 +99,7 @@ with gr.Blocks() as demo:
|
|
| 140 |
btn = gr.Button("生成文章")
|
| 141 |
btn.click(
|
| 142 |
generate_article_progress,
|
| 143 |
-
inputs=[query_input,
|
| 144 |
outputs=[output_text, output_file, model_used_text]
|
| 145 |
)
|
| 146 |
|
|
|
|
| 10 |
import gradio as gr
|
| 11 |
|
| 12 |
# -------------------------------
|
| 13 |
+
# 1. 模型清單(只用中文 GPT2)
|
| 14 |
# -------------------------------
|
| 15 |
+
MODEL_NAME = "uer/gpt2-chinese-cluecorpusmedium"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
| 18 |
if HF_TOKEN:
|
|
|
|
| 20 |
print("✅ 已使用 HUGGINGFACEHUB_API_TOKEN 登入 Hugging Face")
|
| 21 |
|
| 22 |
# -------------------------------
|
| 23 |
+
# 2. 下載模型
|
| 24 |
# -------------------------------
|
| 25 |
+
LOCAL_MODEL_DIR = f"./models/{MODEL_NAME.split('/')[-1]}"
|
| 26 |
+
if not os.path.exists(LOCAL_MODEL_DIR):
|
| 27 |
+
print(f"⬇️ 正在下載模型 {MODEL_NAME} ...")
|
| 28 |
+
snapshot_download(repo_id=MODEL_NAME, token=HF_TOKEN, local_dir=LOCAL_MODEL_DIR)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# -------------------------------
|
| 31 |
# 3. pipeline 載入
|
| 32 |
# -------------------------------
|
| 33 |
+
print(f"🔄 載入中文模型 {MODEL_NAME}")
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained(LOCAL_MODEL_DIR)
|
| 35 |
+
model = AutoModelForCausalLM.from_pretrained(LOCAL_MODEL_DIR)
|
| 36 |
+
|
| 37 |
+
# 修正 pad_token 缺失問題
|
| 38 |
+
if tokenizer.pad_token is None:
|
| 39 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 40 |
+
|
| 41 |
+
generator = pipeline(
|
| 42 |
+
"text-generation",
|
| 43 |
+
model=model,
|
| 44 |
+
tokenizer=tokenizer,
|
| 45 |
+
device=-1 # CPU
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
def call_local_inference(prompt, max_new_tokens=256):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
try:
|
| 50 |
+
# 強制補充中文提示
|
| 51 |
+
if "中文" not in prompt:
|
|
|
|
|
|
|
| 52 |
prompt += "\n(請用中文回答)"
|
| 53 |
|
| 54 |
outputs = generator(
|
|
|
|
| 56 |
max_new_tokens=max_new_tokens,
|
| 57 |
do_sample=True,
|
| 58 |
temperature=0.7,
|
| 59 |
+
pad_token_id=tokenizer.pad_token_id
|
| 60 |
)
|
| 61 |
return outputs[0]["generated_text"]
|
| 62 |
except Exception as e:
|
| 63 |
return f"(生成失敗:{e})"
|
| 64 |
|
| 65 |
# -------------------------------
|
| 66 |
+
# 4. 文章生成
|
| 67 |
# -------------------------------
|
| 68 |
+
def generate_article_progress(query, segments=5):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
docx_file = "/tmp/generated_article.docx"
|
| 70 |
doc = DocxDocument()
|
| 71 |
doc.add_heading(query, level=1)
|
| 72 |
|
|
|
|
|
|
|
|
|
|
| 73 |
all_text = []
|
| 74 |
base_prompt = f"請依據下列主題生成一篇中文文章,主題:{query}\n每段約150-200字。\n"
|
| 75 |
|
| 76 |
for i in range(segments):
|
|
|
|
| 77 |
prompt = base_prompt + f"第{i+1}段:"
|
| 78 |
+
paragraph = call_local_inference(prompt)
|
| 79 |
all_text.append(paragraph)
|
| 80 |
doc.add_paragraph(paragraph)
|
| 81 |
+
yield "\n\n".join(all_text), None, f"本次使用模型:{MODEL_NAME}"
|
|
|
|
| 82 |
|
| 83 |
doc.save(docx_file)
|
| 84 |
+
yield "\n\n".join(all_text), docx_file, f"本次使用模型:{MODEL_NAME}"
|
| 85 |
|
| 86 |
# -------------------------------
|
| 87 |
# 5. Gradio 介面
|
| 88 |
# -------------------------------
|
| 89 |
with gr.Blocks() as demo:
|
| 90 |
gr.Markdown("# 📺 電視弘法視頻生成文章RAG系統")
|
| 91 |
+
gr.Markdown("固定使用 **GPT2-Chinese (uer/gpt2-chinese-cluecorpusmedium)** 生成中文文章。")
|
| 92 |
|
| 93 |
query_input = gr.Textbox(lines=2, placeholder="請輸入文章主題", label="文章主題")
|
|
|
|
| 94 |
segments_input = gr.Slider(minimum=1, maximum=10, step=1, value=5, label="段落數")
|
| 95 |
output_text = gr.Textbox(label="生成文章")
|
| 96 |
output_file = gr.File(label="下載 DOCX")
|
|
|
|
| 99 |
btn = gr.Button("生成文章")
|
| 100 |
btn.click(
|
| 101 |
generate_article_progress,
|
| 102 |
+
inputs=[query_input, segments_input],
|
| 103 |
outputs=[output_text, output_file, model_used_text]
|
| 104 |
)
|
| 105 |
|