Spaces:
Running
on
Zero
Running
on
Zero
| # | |
| <p align="center"> | |
| <h1 align="center"> <ins>RoMa</ins> 🏛️:<br> Robust Dense Feature Matching <br> ⭐CVPR 2024⭐</h1> | |
| <p align="center"> | |
| <a href="https://scholar.google.com/citations?user=Ul-vMR0AAAAJ">Johan Edstedt</a> | |
| · | |
| <a href="https://scholar.google.com/citations?user=HS2WuHkAAAAJ">Qiyu Sun</a> | |
| · | |
| <a href="https://scholar.google.com/citations?user=FUE3Wd0AAAAJ">Georg Bökman</a> | |
| · | |
| <a href="https://scholar.google.com/citations?user=6WRQpCQAAAAJ">Mårten Wadenbäck</a> | |
| · | |
| <a href="https://scholar.google.com/citations?user=lkWfR08AAAAJ">Michael Felsberg</a> | |
| </p> | |
| <h2 align="center"><p> | |
| <a href="https://arxiv.org/abs/2305.15404" align="center">Paper</a> | | |
| <a href="https://parskatt.github.io/RoMa" align="center">Project Page</a> | |
| </p></h2> | |
| <div align="center"></div> | |
| </p> | |
| <br/> | |
| <p align="center"> | |
| <img src="https://github.com/Parskatt/RoMa/assets/22053118/15d8fea7-aa6d-479f-8a93-350d950d006b" alt="example" width=80%> | |
| <br> | |
| <em>RoMa is the robust dense feature matcher capable of estimating pixel-dense warps and reliable certainties for almost any image pair.</em> | |
| </p> | |
| ## Setup/Install | |
| In your python environment (tested on Linux python 3.10), run: | |
| ```bash | |
| pip install -e . | |
| ``` | |
| ## Demo / How to Use | |
| We provide two demos in the [demos folder](demo). | |
| Here's the gist of it: | |
| ```python | |
| from romatch import roma_outdoor | |
| roma_model = roma_outdoor(device=device) | |
| # Match | |
| warp, certainty = roma_model.match(imA_path, imB_path, device=device) | |
| # Sample matches for estimation | |
| matches, certainty = roma_model.sample(warp, certainty) | |
| # Convert to pixel coordinates (RoMa produces matches in [-1,1]x[-1,1]) | |
| kptsA, kptsB = roma_model.to_pixel_coordinates(matches, H_A, W_A, H_B, W_B) | |
| # Find a fundamental matrix (or anything else of interest) | |
| F, mask = cv2.findFundamentalMat( | |
| kptsA.cpu().numpy(), kptsB.cpu().numpy(), ransacReprojThreshold=0.2, method=cv2.USAC_MAGSAC, confidence=0.999999, maxIters=10000 | |
| ) | |
| ``` | |
| **New**: You can also match arbitrary keypoints with RoMa. See [match_keypoints](romatch/models/matcher.py) in RegressionMatcher. | |
| ## Settings | |
| ### Resolution | |
| By default RoMa uses an initial resolution of (560,560) which is then upsampled to (864,864). | |
| You can change this at construction (see roma_outdoor kwargs). | |
| You can also change this later, by changing the roma_model.w_resized, roma_model.h_resized, and roma_model.upsample_res. | |
| ### Sampling | |
| roma_model.sample_thresh controls the thresholding used when sampling matches for estimation. In certain cases a lower or higher threshold may improve results. | |
| ## Reproducing Results | |
| The experiments in the paper are provided in the [experiments folder](experiments). | |
| ### Training | |
| 1. First follow the instructions provided here: https://github.com/Parskatt/DKM for downloading and preprocessing datasets. | |
| 2. Run the relevant experiment, e.g., | |
| ```bash | |
| torchrun --nproc_per_node=4 --nnodes=1 --rdzv_backend=c10d experiments/roma_outdoor.py | |
| ``` | |
| ### Testing | |
| ```bash | |
| python experiments/roma_outdoor.py --only_test --benchmark mega-1500 | |
| ``` | |
| ## License | |
| All our code except DINOv2 is MIT license. | |
| DINOv2 has an Apache 2 license [DINOv2](https://github.com/facebookresearch/dinov2/blob/main/LICENSE). | |
| ## Acknowledgement | |
| Our codebase builds on the code in [DKM](https://github.com/Parskatt/DKM). | |
| ## Tiny RoMa | |
| If you find that RoMa is too heavy, you might want to try Tiny RoMa which is built on top of XFeat. | |
| ```python | |
| from romatch import tiny_roma_v1_outdoor | |
| tiny_roma_model = tiny_roma_v1_outdoor(device=device) | |
| ``` | |
| Mega1500: | |
| | | AUC@5 | AUC@10 | AUC@20 | | |
| |----------|----------|----------|----------| | |
| | XFeat | 46.4 | 58.9 | 69.2 | | |
| | XFeat* | 51.9 | 67.2 | 78.9 | | |
| | Tiny RoMa v1 | 56.4 | 69.5 | 79.5 | | |
| | RoMa | - | - | - | | |
| Mega-8-Scenes (See DKM): | |
| | | AUC@5 | AUC@10 | AUC@20 | | |
| |----------|----------|----------|----------| | |
| | XFeat | - | - | - | | |
| | XFeat* | 50.1 | 64.4 | 75.2 | | |
| | Tiny RoMa v1 | 57.7 | 70.5 | 79.6 | | |
| | RoMa | - | - | - | | |
| IMC22 :'): | |
| | | mAA@10 | | |
| |----------|----------| | |
| | XFeat | 42.1 | | |
| | XFeat* | - | | |
| | Tiny RoMa v1 | 42.2 | | |
| | RoMa | - | | |
| ## BibTeX | |
| If you find our models useful, please consider citing our paper! | |
| ``` | |
| @article{edstedt2024roma, | |
| title={{RoMa: Robust Dense Feature Matching}}, | |
| author={Edstedt, Johan and Sun, Qiyu and Bökman, Georg and Wadenbäck, Mårten and Felsberg, Michael}, | |
| journal={IEEE Conference on Computer Vision and Pattern Recognition}, | |
| year={2024} | |
| } | |
| ``` | |