Spaces:
Running
Running
| import os | |
| import gradio as gr | |
| import numpy as np | |
| import random | |
| from huggingface_hub import AsyncInferenceClient | |
| from translatepy import Translator | |
| from gradio_client import Client, handle_file | |
| from PIL import Image | |
| from huggingface_hub import login | |
| from themes import IndonesiaTheme # Import custom IndonesiaTheme | |
| MAX_SEED = np.iinfo(np.int32).max | |
| HF_TOKEN = "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" | |
| HF_TOKEN_UPSCALER = "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" | |
| # Function to enable LoRA if selected | |
| def enable_lora(lora_add, basemodel): | |
| print(f"[-] Menentukan model: LoRA {'diaktifkan' if lora_add else 'tidak diaktifkan'}, model dasar: {basemodel}") | |
| return basemodel if not lora_add else lora_add | |
| # Function to generate image | |
| async def generate_image(prompt, model, lora_word, width, height, scales, steps, seed): | |
| try: | |
| if seed == -1: | |
| seed = random.randint(0, MAX_SEED) | |
| seed = int(seed) | |
| print(f"[-] Menerjemahkan prompt: {prompt}") | |
| text = str(Translator().translate(prompt, 'English')) + "," + lora_word | |
| print(f"[-] Generating image with prompt: {text}, model: {model}") | |
| client = AsyncInferenceClient() | |
| image = await client.text_to_image(prompt=text, height=height, width=width, guidance_scale=scales, num_inference_steps=steps, model=model) | |
| return image, seed | |
| except Exception as e: | |
| print(f"[-] Error generating image: {e}") | |
| return None, None | |
| # Function to upscale image | |
| def get_upscale_finegrain(prompt, img_path, upscale_factor): | |
| try: | |
| print(f"[-] Memulai proses upscaling dengan faktor {upscale_factor} untuk gambar {img_path}") | |
| client = Client("finegrain/finegrain-image-enhancer", hf_token=HF_TOKEN_UPSCALER) | |
| result = client.predict( | |
| input_image=handle_file(img_path), | |
| prompt=prompt, | |
| negative_prompt="worst quality, low quality, normal quality", | |
| upscale_factor=upscale_factor, | |
| controlnet_scale=0.6, | |
| controlnet_decay=1, | |
| condition_scale=6, | |
| denoise_strength=0.35, | |
| num_inference_steps=18, | |
| solver="DDIM", | |
| api_name="/process" | |
| ) | |
| print(f"[-] Proses upscaling berhasil.") | |
| return result[1] # Return upscale image path | |
| except Exception as e: | |
| print(f"[-] Error scaling image: {e}") | |
| return None | |
| # Main function to generate images and optionally upscale | |
| async def gen(prompt, basemodel, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model, process_lora): | |
| print(f"[-] Memulai generasi gambar dengan prompt: {prompt}") | |
| model = enable_lora(lora_model, basemodel) if process_lora else basemodel | |
| print(f"[-] Menggunakan model: {model}") | |
| image, seed = await generate_image(prompt, model, "", width, height, scales, steps, seed) | |
| if image is None: | |
| print("[-] Image generation failed.") | |
| return [] | |
| image_path = "temp_image.jpg" | |
| print(f"[-] Menyimpan gambar sementara di: {image_path}") | |
| image.save(image_path, format="JPEG") | |
| upscale_image_path = None | |
| if process_upscale: | |
| print(f"[-] Memproses upscaling dengan faktor: {upscale_factor}") | |
| upscale_image_path = get_upscale_finegrain(prompt, image_path, upscale_factor) | |
| if upscale_image_path is not None and os.path.exists(upscale_image_path): | |
| print(f"[-] Proses upscaling selesai. Gambar tersimpan di: {upscale_image_path}") | |
| return [image_path, upscale_image_path] # Return both images | |
| else: | |
| print("[-] Upscaling gagal, jalur gambar upscale tidak ditemukan.") | |
| return [image_path] | |
| # CSS for styling the interface | |
| css = """ | |
| #col-left, #col-mid, #col-right { | |
| margin: 0 auto; | |
| max-width: 400px; | |
| padding: 10px; | |
| border-radius: 15px; | |
| background-color: #f9f9f9; | |
| box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); | |
| } | |
| #banner { | |
| width: 100%; | |
| text-align: center; | |
| margin-bottom: 20px; | |
| } | |
| #run-button { | |
| background-color: #ff4b5c; | |
| color: white; | |
| font-weight: bold; | |
| padding: 10px; | |
| border-radius: 10px; | |
| cursor: pointer; | |
| box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); | |
| } | |
| #footer { | |
| text-align: center; | |
| margin-top: 20px; | |
| color: silver; | |
| } | |
| """ | |
| # Creating Gradio interface | |
| with gr.Blocks(css=css, theme=IndonesiaTheme()) as WallpaperFluxMaker: | |
| # Displaying the application title | |
| gr.HTML('<div id="banner">β¨ Flux MultiMode Generator + Upscaler β¨</div>') | |
| with gr.Column(elem_id="col-container"): | |
| # Output section (replacing ImageSlider with gr.Gallery) | |
| with gr.Row(): | |
| output_res = gr.Gallery(label="β‘ Flux / Upscaled Image β‘", elem_id="output-res", columns=2, height="auto") | |
| # User input section split into two columns | |
| with gr.Row(): | |
| # Column 1: Input prompt, LoRA, and base model | |
| with gr.Column(scale=1, elem_id="col-left"): | |
| prompt = gr.Textbox( | |
| label="π Deskripsi Gambar", | |
| placeholder="Tuliskan prompt Anda dalam bahasa apapun, yang akan langsung diterjemahkan ke bahasa Inggris.", | |
| elem_id="textbox-prompt" | |
| ) | |
| basemodel_choice = gr.Dropdown( | |
| label="πΌοΈ Pilih Model", | |
| choices=[ | |
| "black-forest-labs/FLUX.1-schnell", | |
| "black-forest-labs/FLUX.1-DEV", | |
| "enhanceaiteam/Flux-uncensored", | |
| "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", | |
| "Shakker-Labs/FLUX.1-dev-LoRA-add-details", | |
| "city96/FLUX.1-dev-gguf" | |
| ], | |
| value="black-forest-labs/FLUX.1-schnell" | |
| ) | |
| lora_model_choice = gr.Dropdown( | |
| label="π¨ Pilih LoRA", | |
| choices=[ | |
| "Shakker-Labs/FLUX.1-dev-LoRA-add-details", | |
| "XLabs-AI/flux-RealismLora", | |
| "enhanceaiteam/Flux-uncensored" | |
| ], | |
| value="XLabs-AI/flux-RealismLora" | |
| ) | |
| process_lora = gr.Checkbox(label="π¨ Aktifkan LoRA") | |
| process_upscale = gr.Checkbox(label="π Aktifkan Peningkatan Resolusi") | |
| upscale_factor = gr.Radio(label="π Faktor Peningkatan Resolusi", choices=[2, 4, 8], value=2) | |
| # Column 2: Advanced options (always open) | |
| with gr.Column(scale=1, elem_id="col-right"): | |
| with gr.Accordion(label="βοΈ Opsi Lanjutan", open=True): | |
| width = gr.Slider(label="Lebar", minimum=512, maximum=1280, step=8, value=1280) | |
| height = gr.Slider(label="Tinggi", minimum=512, maximum=1280, step=8, value=768) | |
| scales = gr.Slider(label="Skala", minimum=1, maximum=20, step=1, value=8) | |
| steps = gr.Slider(label="Langkah", minimum=1, maximum=100, step=1, value=8) | |
| seed = gr.Number(label="Seed", value=-1) | |
| # Button to generate image | |
| btn = gr.Button("π Buat Gambar", elem_id="generate-btn") | |
| # Running the `gen` function when "Generate" button is pressed | |
| btn.click(fn=gen, inputs=[ | |
| prompt, basemodel_choice, width, height, scales, steps, seed, upscale_factor, process_upscale, lora_model_choice, process_lora | |
| ], outputs=output_res) | |
| # Launching the Gradio app | |
| WallpaperFluxMaker.queue(api_open=False).launch(show_api=False) |