ReasonaIQ / core.py
Dhruv Pawar
Enhanced UI: Added collapsible sidebar toggle, increased chat area size, fixed streaming bugs
92a25bc
import os
import time
import json
import hashlib
from datetime import datetime, timedelta
from typing import List, Dict, Generator, Optional, Any, Tuple
from dataclasses import dataclass, field, asdict
from functools import wraps, lru_cache
from contextlib import contextmanager
from collections import deque, defaultdict
import threading
from concurrent.futures import ThreadPoolExecutor
from dotenv import load_dotenv
from groq import Groq
import groq
from config import logger, AppConfig, ReasoningMode, ModelConfig
class ResponseCache:
"""Thread-safe LRU cache for API responses"""
def __init__(self, maxsize: int = 100, ttl: int = 3600):
self.cache: Dict[str, Tuple[Any, float]] = {}
self.maxsize = maxsize
self.ttl = ttl
self.lock = threading.Lock()
self.hits = 0
self.misses = 0
def get(self, key: str) -> Optional[Any]:
"""Get cached value if not expired"""
with self.lock:
if key in self.cache:
value, timestamp = self.cache[key]
if time.time() - timestamp < self.ttl:
self.hits += 1
logger.debug(f"Cache hit for key: {key[:20]}...")
return value
else:
del self.cache[key]
self.misses += 1
return None
def set(self, key: str, value: Any) -> None:
"""Set cached value with timestamp"""
with self.lock:
if len(self.cache) >= self.maxsize:
oldest_key = min(self.cache.keys(), key=lambda k: self.cache[k][1])
del self.cache[oldest_key]
self.cache[key] = (value, time.time())
logger.debug(f"Cached response for key: {key[:20]}...")
def clear(self) -> None:
"""Clear cache"""
with self.lock:
self.cache.clear()
self.hits = 0
self.misses = 0
logger.info("Cache cleared")
def get_stats(self) -> Dict[str, int]:
"""Get cache statistics"""
with self.lock:
total = self.hits + self.misses
hit_rate = (self.hits / total * 100) if total > 0 else 0
return {
"hits": self.hits,
"misses": self.misses,
"hit_rate": round(hit_rate, 2),
"size": len(self.cache)
}
class RateLimiter:
"""Token bucket rate limiter"""
def __init__(self, max_requests: int = 50, window: int = 60):
self.max_requests = max_requests
self.window = window
self.requests = deque()
self.lock = threading.Lock()
def is_allowed(self) -> Tuple[bool, Optional[float]]:
"""Check if request is allowed"""
with self.lock:
now = time.time()
while self.requests and self.requests[0] < now - self.window:
self.requests.popleft()
if len(self.requests) < self.max_requests:
self.requests.append(now)
return True, None
else:
wait_time = self.window - (now - self.requests[0])
return False, wait_time
def reset(self) -> None:
"""Reset rate limiter"""
with self.lock:
self.requests.clear()
@dataclass
class ConversationMetrics:
"""Enhanced metrics with thread-safe operations"""
reasoning_depth: int = 0
self_corrections: int = 0
confidence_score: float = 0.0
inference_time: float = 0.0
tokens_used: int = 0
tokens_per_second: float = 0.0
reasoning_paths_explored: int = 0
total_conversations: int = 0
avg_response_time: float = 0.0
cache_hits: int = 0
cache_misses: int = 0
error_count: int = 0
retry_count: int = 0
last_updated: str = field(default_factory=lambda: datetime.now().strftime("%H:%M:%S"))
session_start: str = field(default_factory=lambda: datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
model_switches: int = 0
mode_switches: int = 0
peak_tokens: int = 0
total_latency: float = 0.0
_lock: threading.Lock = field(default_factory=threading.Lock, init=False, repr=False)
def update_confidence(self) -> None:
"""Calculate confidence based on multiple factors"""
with self._lock:
depth_score = min(30, self.reasoning_depth * 5)
correction_score = min(20, self.self_corrections * 10)
speed_score = min(25, 25 / max(1, self.avg_response_time))
consistency_score = 25
self.confidence_score = min(95.0, depth_score + correction_score + speed_score + consistency_score)
def update_tokens_per_second(self, tokens: int, time_taken: float) -> None:
"""Calculate tokens per second"""
with self._lock:
if time_taken > 0:
self.tokens_per_second = tokens / time_taken
def increment_field(self, field_name: str, value: Any = 1) -> None:
"""Thread-safe field increment"""
with self._lock:
current = getattr(self, field_name)
setattr(self, field_name, current + value)
def set_field(self, field_name: str, value: Any) -> None:
"""Thread-safe field setter"""
with self._lock:
setattr(self, field_name, value)
def reset(self) -> None:
"""Reset metrics for new session"""
with self._lock:
self.__init__()
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary"""
with self._lock:
data = asdict(self)
data.pop('_lock', None)
return data
@dataclass
class ConversationEntry:
"""Enhanced conversation entry with metadata"""
timestamp: str
user_message: str
ai_response: str
model: str
reasoning_mode: str
inference_time: float
tokens: int
feedback: str = ""
tags: List[str] = field(default_factory=list)
rating: Optional[int] = None
session_id: str = ""
conversation_id: str = ""
parent_id: Optional[str] = None
temperature: float = 0.7
max_tokens: int = 4000
cache_hit: bool = False
error_occurred: bool = False
retry_count: int = 0
tokens_per_second: float = 0.0
def __post_init__(self):
"""Generate unique IDs"""
if not self.conversation_id:
self.conversation_id = self._generate_id()
def _generate_id(self) -> str:
"""Generate unique conversation ID"""
content = f"{self.timestamp}{self.user_message[:100]}"
return hashlib.md5(content.encode()).hexdigest()[:12]
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary with sanitization"""
return asdict(self)
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'ConversationEntry':
"""Create instance from dictionary"""
return cls(**data)
def add_tag(self, tag: str) -> None:
"""Add tag to conversation"""
if tag not in self.tags:
self.tags.append(tag)
def set_rating(self, rating: int) -> None:
"""Set user rating (1-5)"""
if 1 <= rating <= 5:
self.rating = rating
def error_handler(func):
"""Enhanced error handling decorator for generator functions"""
@wraps(func)
def wrapper(*args, **kwargs):
max_retries = AppConfig.MAX_RETRIES
retry_delay = AppConfig.RETRY_DELAY
for attempt in range(max_retries):
try:
# Check if function is a generator
result = func(*args, **kwargs)
if hasattr(result, '__iter__') and hasattr(result, '__next__'):
# It's a generator, yield from it
yield from result
else:
# Regular function, return result
return result
return # Exit after successful completion
except groq.APIConnectionError as e:
error_msg = f"🔌 **Connection Error**: Cannot reach Groq API.\n\n"
error_msg += "Please check your internet connection and try again."
logger.error(f"API Connection Error in {func.__name__}: {str(e)}")
except groq.RateLimitError as e:
error_msg = f"⏱️ **Rate Limit Exceeded**: Too many requests.\n\n"
error_msg += "Please wait a moment and try again."
logger.error(f"Rate Limit Error in {func.__name__}: {str(e)}")
except groq.AuthenticationError as e:
error_msg = f"🔐 **Authentication Error**: Invalid API key.\n\n"
error_msg += "Please verify your GROQ_API_KEY in the .env file."
logger.error(f"Authentication Error in {func.__name__}: {str(e)}")
yield error_msg
return # Don't retry authentication errors
except groq.APIStatusError as e:
error_msg = f"⚠️ **API Error** (Status {e.status_code}):\n\n"
error_msg += f"{str(e)}\n\nPlease try again or select a different model."
logger.error(f"API Status Error in {func.__name__}: {str(e)}")
except Exception as e:
error_msg = f"❌ **System Error**: {str(e)}\n\n"
error_msg += "Please try again or contact support if the issue persists."
logger.error(f"Unexpected error in {func.__name__}: {str(e)}", exc_info=True)
if attempt < max_retries - 1:
logger.info(f"Retrying in {retry_delay}s... (attempt {attempt+1}/{max_retries})")
time.sleep(retry_delay)
retry_delay *= 2
else:
yield error_msg
return
return wrapper
@contextmanager
def timer(operation: str = "Operation"):
"""Enhanced context manager for timing operations"""
start = time.time()
logger.info(f"Starting: {operation}")
try:
yield
finally:
duration = time.time() - start
logger.info(f"Completed: {operation} in {duration:.3f}s")
def validate_input(text: str, max_length: int = 10000) -> Tuple[bool, Optional[str]]:
"""Validate user input"""
if not text or not text.strip():
return False, "Input cannot be empty"
if len(text) > max_length:
return False, f"Input too long (max {max_length} characters)"
suspicious_patterns = ["<script", "javascript:", "onerror=", "onclick="]
text_lower = text.lower()
for pattern in suspicious_patterns:
if pattern in text_lower:
return False, "Input contains potentially unsafe content"
return True, None
class GroqClientManager:
"""Enhanced singleton manager for Groq client"""
_instance: Optional[Groq] = None
_lock = threading.Lock()
_initialized = False
_health_check_time: Optional[float] = None
_health_check_interval = 300
@classmethod
def get_client(cls) -> Groq:
"""Get or create Groq client instance with health check"""
if cls._instance is None:
with cls._lock:
if cls._instance is None:
cls._initialize_client()
if cls._should_health_check():
cls._perform_health_check()
return cls._instance
@classmethod
def _initialize_client(cls) -> None:
"""Initialize Groq client"""
load_dotenv()
api_key = os.environ.get("GROQ_API_KEY")
if not api_key:
logger.error("GROQ_API_KEY not found in environment")
raise ValueError("GROQ_API_KEY not found. Please set it in your .env file.")
try:
cls._instance = Groq(api_key=api_key, timeout=AppConfig.REQUEST_TIMEOUT)
cls._initialized = True
cls._health_check_time = time.time()
logger.info("Groq client initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize Groq client: {e}")
raise
@classmethod
def _should_health_check(cls) -> bool:
"""Check if health check is needed"""
if not cls._health_check_time:
return True
return time.time() - cls._health_check_time > cls._health_check_interval
@classmethod
def _perform_health_check(cls) -> None:
"""Perform health check on client"""
try:
if cls._instance:
cls._health_check_time = time.time()
logger.debug("Health check passed")
except Exception as e:
logger.warning(f"Health check failed: {e}")
cls._instance = None
cls._initialized = False
class PromptEngine:
"""Enhanced centralized prompt management"""
SYSTEM_PROMPTS = {
ReasoningMode.TREE_OF_THOUGHTS: """You are an advanced reasoning system using Tree of Thoughts methodology.
Explore multiple reasoning paths systematically before converging on the best solution.
Always show your thought process explicitly.""",
ReasoningMode.CHAIN_OF_THOUGHT: """You are a systematic problem solver using Chain of Thought reasoning.
Break down complex problems into clear, logical steps with explicit reasoning.""",
ReasoningMode.SELF_CONSISTENCY: """You are a consistency-focused reasoning system.
Generate multiple independent solutions and identify the most consistent answer.""",
ReasoningMode.REFLEXION: """You are a self-reflective AI system.
Solve problems, critique your own reasoning, and refine your solutions iteratively.""",
ReasoningMode.DEBATE: """You are a multi-agent debate system.
Present multiple perspectives and synthesize the strongest arguments.""",
ReasoningMode.ANALOGICAL: """You are an analogical reasoning system.
Find similar problems and apply their solutions."""
}
TEMPLATES = {
"Code Review": {
"prompt": "Analyze the following code for bugs, performance issues, and best practices:\n\n{query}",
"context": "code_analysis"
},
"Research Summary": {
"prompt": "Provide a comprehensive research summary on:\n\n{query}\n\nInclude key findings, methodologies, and implications.",
"context": "research"
},
"Problem Solving": {
"prompt": "Solve this problem step-by-step with detailed explanations:\n\n{query}",
"context": "problem_solving"
},
"Creative Writing": {
"prompt": "Generate creative content based on:\n\n{query}\n\nBe imaginative and engaging.",
"context": "creative"
},
"Data Analysis": {
"prompt": "Analyze this data/scenario and provide insights:\n\n{query}",
"context": "analysis"
},
"Debugging": {
"prompt": "Debug this code/issue systematically:\n\n{query}",
"context": "debugging"
},
"Custom": {
"prompt": "{query}",
"context": "general"
}
}
REASONING_PROMPTS = {
ReasoningMode.TREE_OF_THOUGHTS: """
**Tree of Thoughts Analysis**
Problem: {query}
**Exploration Phase:**
PATH A (Analytical): [Examine from first principles]
PATH B (Alternative): [Consider different angle]
PATH C (Synthesis): [Integrate insights]
**Evaluation Phase:**
- Assess each path's validity
- Identify strongest reasoning chain
- Converge on optimal solution
**Final Solution:** [Most robust answer with justification]""",
ReasoningMode.CHAIN_OF_THOUGHT: """
**Step-by-Step Reasoning**
Problem: {query}
Step 1: Understand the question
Step 2: Identify key components
Step 3: Apply relevant logic/principles
Step 4: Derive solution
Step 5: Validate and verify
Final Answer: [Clear, justified conclusion]""",
ReasoningMode.SELF_CONSISTENCY: """
**Multi-Path Consistency Check**
Problem: {query}
**Attempt 1:** [First independent solution]
**Attempt 2:** [Alternative approach]
**Attempt 3:** [Third perspective]
**Consensus:** [Most consistent answer across attempts]""",
ReasoningMode.REFLEXION: """
**Reflexion with Self-Correction**
Problem: {query}
**Initial Solution:** [First attempt]
**Self-Critique:**
- Assumptions made?
- Logical flaws?
- Missing elements?
**Refined Solution:** [Improved answer based on reflection]""",
ReasoningMode.DEBATE: """
**Multi-Agent Debate**
Problem: {query}
**Position A:** [Strongest case for one approach]
**Position B:** [Critical examination]
**Synthesis:** [Balanced conclusion]""",
ReasoningMode.ANALOGICAL: """
**Analogical Reasoning**
Problem: {query}
**Similar Problems:** [Identify analogous situations]
**Solution Transfer:** [Adapt known solutions]
**Final Answer:** [Solution derived from analogy]"""
}
@classmethod
def build_prompt(cls, query: str, mode: ReasoningMode, template: str) -> str:
"""Build enhanced reasoning prompt"""
template_data = cls.TEMPLATES.get(template, cls.TEMPLATES["Custom"])
formatted_query = template_data["prompt"].format(query=query)
return cls.REASONING_PROMPTS[mode].format(query=formatted_query)
@classmethod
def build_critique_prompt(cls) -> str:
"""Build validation prompt for self-critique"""
return """
**Validation Check:**
Review the previous response for:
1. Factual accuracy
2. Logical consistency
3. Completeness
4. Potential biases or errors
Provide brief validation or corrections if needed."""
@classmethod
def get_template_context(cls, template: str) -> str:
"""Get context for template"""
return cls.TEMPLATES.get(template, {}).get("context", "general")
class ConversationExporter:
"""Enhanced conversation export with multiple formats including PDF"""
@staticmethod
def to_json(entries: List[ConversationEntry], pretty: bool = True) -> str:
"""Export to JSON format"""
data = [entry.to_dict() for entry in entries]
indent = 2 if pretty else None
return json.dumps(data, indent=indent, ensure_ascii=False)
@staticmethod
def to_markdown(entries: List[ConversationEntry], include_metadata: bool = True) -> str:
"""Export to Markdown format"""
md = "# Conversation History\n\n"
md += f"*Exported on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}*\n\n"
md += "---\n\n"
for i, entry in enumerate(entries, 1):
md += f"## Conversation {i}\n\n"
md += f"**Timestamp:** {entry.timestamp} \n"
md += f"**Model:** {entry.model} \n"
md += f"**Mode:** {entry.reasoning_mode} \n"
md += f"**Performance:** {entry.inference_time:.2f}s | {entry.tokens} tokens\n\n"
md += f"### User\n\n{entry.user_message}\n\n"
md += f"### Assistant\n\n{entry.ai_response}\n\n"
md += "---\n\n"
return md
@staticmethod
def to_text(entries: List[ConversationEntry]) -> str:
"""Export to plain text format"""
txt = "="*70 + "\n"
txt += "CONVERSATION HISTORY\n"
txt += f"Exported: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n"
txt += "="*70 + "\n\n"
for i, entry in enumerate(entries, 1):
txt += f"Conversation {i}\n"
txt += f"Time: {entry.timestamp}\n"
txt += f"Model: {entry.model} | Mode: {entry.reasoning_mode}\n"
txt += f"Performance: {entry.inference_time:.2f}s | {entry.tokens} tokens\n"
txt += "\n"
txt += f"USER:\n{entry.user_message}\n\n"
txt += f"ASSISTANT:\n{entry.ai_response}\n"
txt += "\n" + "-"*70 + "\n\n"
return txt
@staticmethod
def to_pdf(entries: List[ConversationEntry], filename: str) -> str:
"""Export to PDF format with memory optimization"""
try:
from reportlab.lib.pagesizes import letter
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, PageBreak
from reportlab.lib.enums import TA_LEFT, TA_CENTER
from reportlab.lib.colors import HexColor
doc = SimpleDocTemplate(filename, pagesize=letter)
story = []
styles = getSampleStyleSheet()
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Heading1'],
fontSize=24,
textColor=HexColor('#667eea'),
spaceAfter=30,
alignment=TA_CENTER
)
heading_style = ParagraphStyle(
'CustomHeading',
parent=styles['Heading2'],
fontSize=14,
textColor=HexColor('#764ba2'),
spaceAfter=12,
spaceBefore=12
)
user_style = ParagraphStyle(
'UserStyle',
parent=styles['Normal'],
fontSize=11,
textColor=HexColor('#2c3e50'),
leftIndent=20,
spaceAfter=10
)
ai_style = ParagraphStyle(
'AIStyle',
parent=styles['Normal'],
fontSize=11,
textColor=HexColor('#34495e'),
leftIndent=20,
spaceAfter=10
)
meta_style = ParagraphStyle(
'MetaStyle',
parent=styles['Normal'],
fontSize=9,
textColor=HexColor('#7f8c8d'),
spaceAfter=6
)
story.append(Paragraph("AI Reasoning Chat History", title_style))
story.append(Paragraph(
f"Exported on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
meta_style
))
story.append(Spacer(1, 0.3*inch))
for i, entry in enumerate(entries, 1):
story.append(Paragraph(f"Conversation {i}", heading_style))
meta_text = f"<b>Time:</b> {entry.timestamp} | <b>Model:</b> {entry.model} | <b>Mode:</b> {entry.reasoning_mode}"
story.append(Paragraph(meta_text, meta_style))
perf_text = f"<b>Performance:</b> {entry.inference_time:.2f}s | {entry.tokens} tokens | {entry.tokens_per_second:.1f} tok/s"
story.append(Paragraph(perf_text, meta_style))
story.append(Spacer(1, 0.1*inch))
story.append(Paragraph("<b>User:</b>", user_style))
# Escape and truncate for memory efficiency
user_msg = entry.user_message.replace('<', '&lt;').replace('>', '&gt;').replace('\n', '<br/>')[:3000]
if len(entry.user_message) > 3000:
user_msg += "... (truncated)"
story.append(Paragraph(user_msg, user_style))
story.append(Spacer(1, 0.15*inch))
story.append(Paragraph("<b>Assistant:</b>", ai_style))
# Escape and truncate for memory efficiency
ai_resp = entry.ai_response.replace('<', '&lt;').replace('>', '&gt;').replace('\n', '<br/>')[:5000]
if len(entry.ai_response) > 5000:
ai_resp += "... (truncated)"
story.append(Paragraph(ai_resp, ai_style))
if i < len(entries):
story.append(PageBreak())
doc.build(story)
logger.info(f"PDF exported successfully to {filename}")
return filename
except ImportError:
error_msg = "reportlab library not installed. Run: pip install reportlab"
logger.error(error_msg)
return ""
except Exception as e:
logger.error(f"PDF export failed: {e}", exc_info=True)
return ""
@classmethod
def export(cls, entries: List[ConversationEntry], format_type: str,
include_metadata: bool = True) -> Tuple[str, str]:
"""Export conversation and return content and filename"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
if format_type == "pdf":
ext = "pdf"
filename = AppConfig.EXPORT_DIR / f"conversation_{timestamp}.{ext}"
result = cls.to_pdf(entries, str(filename))
if result:
return f"✅ PDF exported successfully! File: conversation_{timestamp}.pdf", str(filename)
else:
return "❌ PDF export failed. Install reportlab: pip install reportlab", ""
exporters = {
"json": lambda: cls.to_json(entries),
"markdown": lambda: cls.to_markdown(entries, include_metadata),
"txt": lambda: cls.to_text(entries)
}
if format_type not in exporters:
format_type = "markdown"
content = exporters[format_type]()
ext = "md" if format_type == "markdown" else format_type
filename = AppConfig.EXPORT_DIR / f"conversation_{timestamp}.{ext}"
try:
with open(filename, 'w', encoding='utf-8') as f:
f.write(content)
logger.info(f"Conversation exported to {filename}")
return content, str(filename)
except Exception as e:
logger.error(f"Failed to export conversation: {e}")
return f"Error: {str(e)}", ""
@staticmethod
def create_backup(entries: List[ConversationEntry]) -> str:
"""Create automatic backup"""
if not entries:
return ""
try:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = AppConfig.BACKUP_DIR / f"backup_{timestamp}.json"
data = [entry.to_dict() for entry in entries]
with open(filename, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=2, ensure_ascii=False)
logger.info(f"Backup created: {filename}")
return str(filename)
except Exception as e:
logger.error(f"Backup failed: {e}")
return ""
class AdvancedReasoner:
"""Enhanced reasoning engine with caching, rate limiting, and advanced features"""
def __init__(self):
self.client = GroqClientManager.get_client()
self.metrics = ConversationMetrics()
self.conversation_history: List[ConversationEntry] = []
self.response_times: List[float] = []
self.prompt_engine = PromptEngine()
self.exporter = ConversationExporter()
self.cache = ResponseCache(maxsize=AppConfig.CACHE_SIZE, ttl=AppConfig.CACHE_TTL)
self.rate_limiter = RateLimiter(
max_requests=AppConfig.RATE_LIMIT_REQUESTS,
window=AppConfig.RATE_LIMIT_WINDOW
)
self.session_id = hashlib.md5(str(time.time()).encode()).hexdigest()[:12]
self.executor = ThreadPoolExecutor(max_workers=3)
self.model_usage: Dict[str, int] = defaultdict(int)
self.mode_usage: Dict[str, int] = defaultdict(int)
self.error_log: List[Dict[str, Any]] = []
logger.info(f"AdvancedReasoner initialized with session ID: {self.session_id}")
def _generate_cache_key(self, query: str, model: str, mode: str,
temp: float, template: str) -> str:
"""Generate stable cache key for request"""
# Normalize inputs for consistent key generation
normalized_query = query.strip().lower()[:500] # Limit length
content = f"{normalized_query}|{model}|{mode}|{temp:.2f}|{template}"
return hashlib.sha256(content.encode('utf-8')).hexdigest()
def _calculate_reasoning_depth(self, response: str) -> int:
"""Calculate reasoning depth from response"""
indicators = {
"Step": 3, "PATH": 4, "Attempt": 3, "Phase": 3,
"Analysis": 2, "Consider": 1, "Therefore": 2,
"Conclusion": 2, "Evidence": 2, "Reasoning": 1
}
depth = 0
for indicator, weight in indicators.items():
depth += response.count(indicator) * weight
return min(depth, 100)
def _build_messages(
self,
query: str,
history: List[Dict],
mode: ReasoningMode,
template: str
) -> List[Dict[str, str]]:
"""Build message list for API call with validation"""
messages = [
{"role": "system", "content": self.prompt_engine.SYSTEM_PROMPTS[mode]}
]
recent_history = history[-AppConfig.MAX_HISTORY_LENGTH:] if history else []
for msg in recent_history:
# Validate message structure
if isinstance(msg, dict) and "role" in msg and "content" in msg:
role = msg.get("role")
content = msg.get("content", "")
# Only add valid user/assistant messages
if role in ["user", "assistant"] and content:
messages.append({"role": role, "content": str(content)})
enhanced_query = self.prompt_engine.build_prompt(query, mode, template)
messages.append({"role": "user", "content": enhanced_query})
return messages
def _log_error(self, error: Exception, context: Dict[str, Any]) -> None:
"""Log error with context"""
error_entry = {
"timestamp": datetime.now().isoformat(),
"error": str(error),
"type": type(error).__name__,
"context": context
}
self.error_log.append(error_entry)
self.metrics.increment_field("error_count")
logger.error(f"Error logged: {error_entry}")
@error_handler
def generate_response(
self,
query: str,
history: List[Dict],
model: str,
reasoning_mode: ReasoningMode,
enable_critique: bool,
temperature: float,
max_tokens: int,
prompt_template: str = "Custom",
use_cache: bool = True
) -> Generator[str, None, None]:
"""Generate response with advanced features - FIXED for streaming"""
is_valid, error_msg = validate_input(query)
if not is_valid:
yield f"⚠️ Validation Error: {error_msg}"
return
allowed, wait_time = self.rate_limiter.is_allowed()
if not allowed:
yield f"⏱️ Rate Limit: Please wait {wait_time:.1f} seconds."
return
cache_key = self._generate_cache_key(query, model, reasoning_mode.value, temperature, prompt_template)
if use_cache:
cached_response = self.cache.get(cache_key)
if cached_response:
self.metrics.increment_field("cache_hits")
logger.info("Returning cached response")
yield cached_response
return
self.metrics.increment_field("cache_misses")
with timer(f"Response generation for {model}"):
start_time = time.time()
messages = self._build_messages(query, history, reasoning_mode, prompt_template)
full_response = ""
token_count = 0
try:
stream = self.client.chat.completions.create(
messages=messages,
model=model,
temperature=temperature,
max_tokens=max_tokens,
stream=True,
)
# FIXED: Only yield new content, not full_response repeatedly
for chunk in stream:
if chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
full_response += content
token_count += 1
self.metrics.increment_field("tokens_used")
# Yield only the accumulated response so far
yield full_response
except Exception as e:
self._log_error(e, {
"query": query[:100],
"model": model,
"mode": reasoning_mode.value
})
raise
inference_time = time.time() - start_time
self.metrics.set_field("reasoning_depth", self._calculate_reasoning_depth(full_response))
self.metrics.update_tokens_per_second(token_count, inference_time)
self.metrics.set_field("peak_tokens", max(self.metrics.peak_tokens, token_count))
if enable_critique and len(full_response) > 150:
messages.append({"role": "assistant", "content": full_response})
messages.append({
"role": "user",
"content": self.prompt_engine.build_critique_prompt()
})
full_response += "\n\n---\n### Validation & Self-Critique\n"
yield full_response
try:
critique_stream = self.client.chat.completions.create(
messages=messages,
model=model,
temperature=temperature * 0.7,
max_tokens=max_tokens // 3,
stream=True,
)
for chunk in critique_stream:
if chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
full_response += content
token_count += 1
yield full_response
self.metrics.increment_field("self_corrections")
except Exception as e:
logger.warning(f"Critique phase failed: {e}")
final_inference_time = time.time() - start_time
self.metrics.set_field("inference_time", final_inference_time)
self.metrics.increment_field("total_latency", final_inference_time)
self.response_times.append(final_inference_time)
self.metrics.set_field("avg_response_time", sum(self.response_times) / len(self.response_times))
self.metrics.set_field("last_updated", datetime.now().strftime("%H:%M:%S"))
self.metrics.update_confidence()
self.metrics.increment_field("total_conversations")
self.model_usage[model] += 1
self.mode_usage[reasoning_mode.value] += 1
tokens_per_sec = token_count / final_inference_time if final_inference_time > 0 else 0
entry = ConversationEntry(
timestamp=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
user_message=query,
ai_response=full_response,
model=model,
reasoning_mode=reasoning_mode.value,
inference_time=final_inference_time,
tokens=token_count,
session_id=self.session_id,
temperature=temperature,
max_tokens=max_tokens,
cache_hit=False,
tokens_per_second=tokens_per_sec
)
self.conversation_history.append(entry)
if use_cache:
self.cache.set(cache_key, full_response)
if len(self.conversation_history) % 10 == 0:
try:
self.executor.submit(self.exporter.create_backup, self.conversation_history.copy())
except Exception as e:
logger.warning(f"Auto-backup failed: {e}")
if len(self.conversation_history) > AppConfig.MAX_CONVERSATION_STORAGE:
self.conversation_history = self.conversation_history[-AppConfig.MAX_CONVERSATION_STORAGE:]
logger.info(f"Trimmed history to {AppConfig.MAX_CONVERSATION_STORAGE} entries")
def export_conversation(self, format_type: str, include_metadata: bool = True) -> Tuple[str, str]:
"""Export conversation history"""
if not self.conversation_history:
return "No conversations to export.", ""
try:
return self.exporter.export(self.conversation_history, format_type, include_metadata)
except Exception as e:
logger.error(f"Export failed: {e}")
return f"Export failed: {str(e)}", ""
def export_current_chat_pdf(self) -> Optional[str]:
"""Export current chat as PDF - for quick download button"""
if not self.conversation_history:
return None
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = AppConfig.EXPORT_DIR / f"chat_{timestamp}.pdf"
result = self.exporter.to_pdf(self.conversation_history, str(filename))
return result if result else None
def search_conversations(self, keyword: str) -> List[Tuple[int, ConversationEntry]]:
"""Search through conversation history"""
keyword_lower = keyword.lower()
return [
(i, entry) for i, entry in enumerate(self.conversation_history)
if keyword_lower in entry.user_message.lower()
or keyword_lower in entry.ai_response.lower()
]
def get_analytics(self) -> Optional[Dict[str, Any]]:
"""Generate analytics data"""
if not self.conversation_history:
return None
models = [e.model for e in self.conversation_history]
modes = [e.reasoning_mode for e in self.conversation_history]
total_time = sum(e.inference_time for e in self.conversation_history)
total_tokens = sum(e.tokens for e in self.conversation_history)
return {
"session_id": self.session_id,
"total_conversations": len(self.conversation_history),
"total_tokens": total_tokens,
"total_time": total_time,
"avg_inference_time": self.metrics.avg_response_time,
"peak_tokens": self.metrics.peak_tokens,
"most_used_model": max(set(models), key=models.count) if models else "N/A",
"most_used_mode": max(set(modes), key=modes.count) if modes else "N/A",
"cache_hits": self.metrics.cache_hits,
"cache_misses": self.metrics.cache_misses,
"error_count": self.metrics.error_count
}
def clear_history(self) -> None:
"""Clear conversation history and reset metrics"""
if self.conversation_history:
try:
self.executor.submit(self.exporter.create_backup, self.conversation_history.copy())
except Exception as e:
logger.warning(f"Failed to backup before clearing: {e}")
self.conversation_history.clear()
self.response_times.clear()
self.metrics.reset()
self.cache.clear()
self.rate_limiter.reset()
self.model_usage.clear()
self.mode_usage.clear()
logger.info("History cleared and metrics reset")
def __del__(self):
"""Cleanup on deletion"""
try:
self.executor.shutdown(wait=False)
logger.info("AdvancedReasoner cleanup completed")
except:
pass