Gamortsey's picture
Update app.py
ecc4b02 verified
import os
import time
import re
import requests
import phonenumbers
import pandas as pd
import urllib.parse
from bs4 import BeautifulSoup
import torch
from transformers import (
AutoTokenizer,
AutoModelForTokenClassification,
AutoModelForSeq2SeqLM,
pipeline
)
import gradio as gr
from concurrent.futures import ThreadPoolExecutor, as_completed
from email.message import EmailMessage
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
# ============================
# CONFIG
# ============================
API_KEY = os.environ.get("GOOGLE_API_KEY", "YOUR_GOOGLE_API_KEY")
CX = os.environ.get("GOOGLE_CSE_ID", "YOUR_CSE_ID")
DEFAULT_COUNTRY = "Ghana"
RESULTS_PER_QUERY = int(os.environ.get("RESULTS_PER_QUERY", 4))
MAX_SCRAPE_WORKERS = int(os.environ.get("MAX_SCRAPE_WORKERS", 6))
ALLY_AI_NAME = os.environ.get("ALLY_AI_NAME", "Ally AI")
ALLY_AI_LOGO_URL_DEFAULT = os.environ.get("ALLY_AI_LOGO_URL",
"https://imgur.com/a/lVxnQke")
COUNTRY_TLD_MAP = {"Ghana":"gh","Nigeria":"ng","Kenya":"ke","South Africa":"za","USA":"us","United Kingdom":"uk"}
COUNTRY_REGION_MAP= {"Ghana":"GH","Nigeria":"NG","Kenya":"KE","South Africa":"ZA","USA":"US","United Kingdom":"GB"}
HEADERS = {"User-Agent":"Mozilla/5.0 (X11; Linux x86_64)"}
EMAIL_REGEX = re.compile(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}")
# ============================
# MODELS (lightweight & CPU-friendly)
# ============================
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print("Device set to use", DEVICE)
# NER model (people/orgs/locs)
ner_model_id = "dslim/bert-base-NER"
ner_tokenizer = AutoTokenizer.from_pretrained(ner_model_id)
ner_model = AutoModelForTokenClassification.from_pretrained(ner_model_id)
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple",
device=0 if DEVICE=="cuda" else -1)
# Summarizer / anonymizer
text_model_id = "google/flan-t5-large"
text_tokenizer = AutoTokenizer.from_pretrained(text_model_id)
text_model = AutoModelForSeq2SeqLM.from_pretrained(text_model_id).to(DEVICE)
# ============================
# TAXONOMY & HELPERS
# ============================
PROFESSION_KEYWORDS = ["lawyer","therapist","doctor","counselor","social worker",
"advocate","psychologist","psychiatrist","consultant","nurse","hotline","gbv"]
PROBLEM_PROFESSION_MAP = {
"rape": ["lawyer","therapist","counselor","doctor"],
"sexual assault": ["lawyer","therapist","counselor"],
"domestic violence": ["lawyer","social worker","therapist"],
"abuse": ["counselor","social worker","therapist","lawyer"],
"trauma": ["therapist","psychologist","psychiatrist"],
"depression": ["therapist","psychologist","doctor"],
"violence": ["lawyer","counselor","social worker"],
}
def get_region_for_country(country: str) -> str:
return COUNTRY_REGION_MAP.get(country, "GH")
def get_tld_for_country(country: str) -> str:
return COUNTRY_TLD_MAP.get(country, "")
def build_country_biased_query(core: str, country: str) -> str:
tld = get_tld_for_country(country)
suffix = f" in {country}"
if tld:
return f"{core}{suffix} site:.{tld} OR {country}"
return f"{core}{suffix}"
def dedup_by_url(items):
seen, out = set(), []
for it in items:
u = it.get("link") or it.get("url")
if u and u not in seen:
seen.add(u)
out.append(it)
return out
# ============================
# SEARCH & SCRAPING
# ============================
def google_search(query, num_results=5):
if not API_KEY or not CX or "YOUR_GOOGLE_API_KEY" in API_KEY or "YOUR_CSE_ID" in CX:
raise RuntimeError("Google API key and CSE ID must be set as environment variables.")
url = "https://www.googleapis.com/customsearch/v1"
params = {"q":query, "key":API_KEY, "cx":CX, "num":num_results}
r = requests.get(url, params=params, timeout=20)
r.raise_for_status()
items = r.json().get("items", []) or []
return [{"title":i.get("title",""), "link":i.get("link",""), "snippet":i.get("snippet","")} for i in items]
def extract_phones(text, region="GH"):
phones = []
for match in phonenumbers.PhoneNumberMatcher(text, region):
try:
phones.append(phonenumbers.format_number(match.number, phonenumbers.PhoneNumberFormat.INTERNATIONAL))
except Exception:
pass
return list(set(phones))
def _domain_from_url(url):
try:
return urllib.parse.urlparse(url).netloc
except Exception:
return url
def scrape_contacts(url, region="GH"):
"""
Extended scraping: returns emails, phones, and a guessed 'org' name
extracted from meta tags, headings, or via NER on page text.
"""
try:
res = requests.get(url, headers=HEADERS, timeout=12)
if not res.ok or not res.text:
return {"emails": [], "phones": [], "org": None}
soup = BeautifulSoup(res.text, "html.parser")
# raw text for phone/email/NER
text = soup.get_text(separator=" ")
text = " ".join(text.split())[:300000]
# emails & phones
emails = list(set(EMAIL_REGEX.findall(text)))
phones = extract_phones(text, region)
# try meta og:site_name or twitter site meta
org_name = None
meta_og = soup.find("meta", property="og:site_name") or soup.find("meta", attrs={"name":"og:site_name"})
if meta_og and meta_og.get("content"):
org_name = meta_og.get("content").strip()
# fallback to <title> or first <h1>
if not org_name:
title_tag = soup.find("title")
if title_tag and title_tag.get_text(strip=True):
org_name = title_tag.get_text(strip=True)
if not org_name:
h1 = soup.find("h1")
if h1 and h1.get_text(strip=True):
org_name = h1.get_text(strip=True)
# run NER to find ORG mentions in the page text and prefer that if short and clean
try:
people, orgs, locs = extract_entities(text)
if orgs:
# choose first short/clean org
for o in orgs:
if len(o) > 1 and len(o) < 80:
org_name = o
break
except Exception:
pass
# final fallback: domain
if not org_name:
org_name = _domain_from_url(url)
return {"emails": emails, "phones": phones, "org": org_name}
except Exception as e:
print(f"[scrape error] {url} -> {e}")
return {"emails": [], "phones": [], "org": _domain_from_url(url)}
# ============================
# NER + STORY β†’ PROFESSIONS
# ============================
def extract_entities(text):
if not text:
return [],[],[]
try:
ner_results = ner_pipe(text)
except Exception as e:
print("[ner error]", e)
return [],[],[]
people = [e["word"] for e in ner_results if e.get("entity_group") == "PER"]
orgs = [e["word"] for e in ner_results if e.get("entity_group") == "ORG"]
locs = [e["word"] for e in ner_results if e.get("entity_group") == "LOC"]
return list(set(people)), list(set(orgs)), list(set(locs))
def professions_from_story(story: str):
s = (story or "").lower()
found = set([p for p in PROFESSION_KEYWORDS if p in s])
for prob, profs in PROBLEM_PROFESSION_MAP.items():
if prob in s:
found.update(profs)
if not found:
return ["gbv","counselor"]
order = ["lawyer","therapist","counselor","social worker","psychologist","psychiatrist","doctor","advocate","nurse","hotline","gbv"]
return [p for p in order if p in found]
def build_queries(story: str, country: str):
profs = professions_from_story(story)
cores = []
for p in profs:
if p == "gbv":
cores += ["GBV support organizations", "gender based violence help"]
else:
cores += [f"{p} for GBV", f"{p} for sexual assault", f"{p} near me {p} {country}"]
unique_cores, seen = [], set()
for c in cores:
if c not in seen:
unique_cores.append(c); seen.add(c)
return [build_country_biased_query(core, country) for core in unique_cores], profs
# ============================
# TEXT GEN: anonymize + result summary
# ============================
def anonymize_story(story: str, max_sentences: int = 2):
if not story or not story.strip():
return ""
prompt = (
"Anonymize and shorten the following personal story for contacting professionals. "
"Remove names, exact ages, dates, locations and any identifying details. "
f"Keep only the essential problem and the type of help requested. Output <= {max_sentences} sentences.\n\n"
f"Story: {story}\n\nSummary:"
)
inputs = text_tokenizer(prompt, return_tensors="pt").to(DEVICE)
with torch.no_grad():
outputs = text_model.generate(**inputs, max_new_tokens=120, temperature=0.2)
return text_tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
def generate_summary(query, people, orgs, locs):
prompt = (
"Write a short, empathetic summary of these search results for a person seeking GBV help.\n"
f"Query: {query}\nPeople: {', '.join(people) or 'β€”'}\nOrgs: {', '.join(orgs) or 'β€”'}\nLocations: {', '.join(locs) or 'β€”'}\n\n"
"Explain how the organizations/professionals can help in 3-4 sentences."
)
inputs = text_tokenizer(prompt, return_tensors="pt").to(DEVICE)
with torch.no_grad():
outputs = text_model.generate(**inputs, max_new_tokens=150, temperature=0.7)
return text_tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
# ============================
# MAIN PIPELINE
# ============================
def find_professionals_from_story(story, country=DEFAULT_COUNTRY, results_per_query=RESULTS_PER_QUERY):
region = get_region_for_country(country)
queries, profs = build_queries(story, country)
# Search
search_results = []
for q in queries:
try:
items = google_search(q, num_results=results_per_query)
for it in items:
it["query"] = q
search_results.extend(items)
except Exception as e:
print("[search error]", q, e)
search_results = dedup_by_url(search_results)
if not search_results:
return {"summary":"No results found. Try a different country or wording.",
"professionals":[], "queries_used":queries}
# NER on titles/snippets for context
all_people, all_orgs, all_locs = [], [], []
for r in search_results:
ctx = f"{r.get('title','')}. {r.get('snippet','')}"
p,o,l = extract_entities(ctx)
all_people += p; all_orgs += o; all_locs += l
# Scrape contacts concurrently, extracting org names from page content
professionals = []
with ThreadPoolExecutor(max_workers=MAX_SCRAPE_WORKERS) as ex:
futures = {ex.submit(scrape_contacts, r["link"], region): r for r in search_results}
for fut in as_completed(futures):
r = futures[fut]
contacts = {"emails": [], "phones": [], "org": None}
try:
contacts = fut.result()
except Exception as e:
print("[scrape future error]", r["link"], e)
# choose a single email/phone if available
email = contacts["emails"][0] if contacts.get("emails") else None
phone = contacts["phones"][0] if contacts.get("phones") else None
org_name = contacts.get("org") or ""
# attempt to choose profession tag from the query used
prof_tag = None
qlower = (r.get("query") or "").lower()
for p in professions_from_story(story):
if p in qlower:
prof_tag = p
break
prof_tag = prof_tag or (professions_from_story(story)[0] if professions_from_story(story) else "gbv")
professionals.append({
"org": org_name,
"url": r.get("link",""),
"email": email if email else "Not found",
"phone": phone if phone else "Not found",
"profession": prof_tag,
"source_query": r.get("query","")
})
summary = generate_summary("; ".join(queries[:3]) + (" ..." if len(queries)>3 else ""),
list(set(all_people)), list(set(all_orgs)), list(set(all_locs)))
# Sort by availability of email/phone
professionals.sort(key=lambda it: (0 if it["email"]!="Not found" else 1,
0 if it["phone"]!="Not found" else 1))
return {"summary": summary, "professionals": professionals, "queries_used": queries}
# ============================
# DRAFT (mailto + .eml)
# ============================
def build_mailto_and_eml(to_addr, subject, body, default_from="noreply@ally.ai"):
"""
Creates a proper .eml file and returns (mailto_link, absolute_eml_path).
Ensures the file is actually written and non-empty. If .eml fails, writes a .txt fallback.
"""
# sanitize inputs
to_addr = (to_addr or "").strip()
subject = subject or ""
body = body or ""
# Create EmailMessage object
msg = EmailMessage()
msg["From"] = default_from
msg["To"] = to_addr
msg["Subject"] = subject
msg.set_content(body)
# ensure output dir exists and use absolute path (more robust for HF Spaces / Colab)
out_dir = os.path.abspath("tmp")
os.makedirs(out_dir, exist_ok=True)
fname = os.path.join(out_dir, f"email_draft_{int(time.time())}.eml")
try:
# write bytes
with open(fname, "wb") as f:
f.write(msg.as_bytes())
# verify file exists and is non-empty
if os.path.exists(fname) and os.path.getsize(fname) > 0:
mailto = f"mailto:{urllib.parse.quote(to_addr)}?subject={urllib.parse.quote(subject)}&body={urllib.parse.quote(body)}"
return mailto, fname
# fallback: create a plain text copy (useful for debugging)
fallback = fname + ".txt"
with open(fallback, "w", encoding="utf-8") as f:
f.write(f"To: {to_addr}\nSubject: {subject}\n\n{body}")
mailto = f"mailto:{urllib.parse.quote(to_addr)}?subject={urllib.parse.quote(subject)}&body={urllib.parse.quote(body)}"
return mailto, fallback
except Exception as e:
# If writing .eml fails entirely, create a .txt fallback and return that path
fallback = os.path.join(out_dir, f"email_draft_{int(time.time())}.txt")
try:
with open(fallback, "w", encoding="utf-8") as f:
f.write(f"Error writing .eml: {e}\n\nTo: {to_addr}\nSubject: {subject}\n\n{body}")
mailto = f"mailto:{urllib.parse.quote(to_addr)}?subject={urllib.parse.quote(subject)}&body={urllib.parse.quote(body)}"
return mailto, fallback
except Exception as e2:
# ultimate fallback: return no file and an informative mailto
mailto = f"mailto:{urllib.parse.quote(to_addr)}?subject={urllib.parse.quote(subject)}&body={urllib.parse.quote(body)}"
return mailto, None
# ============================
# SENDER (SMTP) β€” Ally AI branding
# ============================
def send_ally_ai_email(to_email, subject, body, user_email,
sender_email, sender_password,
ai_name=ALLY_AI_NAME,
logo_url=ALLY_AI_LOGO_URL_DEFAULT):
if not to_email or to_email == "Not found":
return "❌ No recipient email found β€” choose a contact or provide a manual email."
msg = MIMEMultipart("alternative")
msg["Subject"] = subject or "Request for support"
msg["From"] = f"{ai_name} <{sender_email}>"
msg["To"] = to_email
html_content = f"""
<html>
<body style="font-family: Arial, sans-serif; color: #333;">
<div style="padding: 20px; border: 1px solid #eee; border-radius: 10px; max-width: 640px; margin: auto;">
<div style="text-align: center;">
<img src="{logo_url}" alt="{ai_name} Logo" width="120" style="margin-bottom: 20px;" />
</div>
<p>{body}</p>
<p style="margin-top:20px;">
<b>Contact the survivor back at:</b> <a href="mailto:{user_email}">{user_email}</a>
</p>
<hr style="border:none;border-top:1px solid #eee;margin:24px 0;">
<p style="font-size: 12px; color: gray; text-align: center;">
This message was prepared with the help of <b>{ai_name}</b> β€” connecting survivors with help safely.
</p>
</div>
</body>
</html>
"""
msg.attach(MIMEText(html_content, "html"))
try:
server = smtplib.SMTP("smtp.gmail.com", 587)
server.starttls()
server.login(sender_email, sender_password)
server.sendmail(sender_email, [to_email], msg.as_string())
server.quit()
return f"βœ… Email sent successfully to {to_email}"
except Exception as e:
return f"❌ Failed to send email: {str(e)}"
# ============================
# GRADIO UI
# ============================
def run_search(story, country):
try:
out = find_professionals_from_story(story, country=country, results_per_query=RESULTS_PER_QUERY)
except Exception as e:
err_msg = f"Search failed: {e}"
placeholder = ["0 β€” No results (search failed)"]
return err_msg, [], placeholder, ""
pros = out.get("professionals", []) or []
# build table records with org instead of article title
try:
records = pd.DataFrame(pros).to_dict(orient="records") if pros else []
except Exception:
records = []
# build dropdown options as list of strings
options = []
for i, r in enumerate(pros):
label_contact = r.get("email") if r.get("email") and r.get("email") != "Not found" else (r.get("phone", "No contact"))
org_label = r.get("org") or r.get("url") or "(no org)"
label = f"{i} β€” {org_label} ({label_contact})"
options.append(label)
if not options:
options = ["0 β€” No results (try a different country/query)"]
# anonymize safely
try:
anon = anonymize_story(story) or "I am seeking confidential support regarding gender-based violence."
except Exception as e:
print("[anonymize error]", e)
anon = "I am seeking confidential support regarding gender-based violence."
summary = out.get("summary", "No results found.")
return summary, records, options, anon
def make_body(anon_text, full_story, use_anon, user_email):
core = (anon_text or "").strip() if use_anon else (full_story or "").strip()
lines = [
core,
"",
f"Reply contact: {user_email}",
"",
"Thank you."
]
return "\n".join([l for l in lines if l is not None])
def preview_contact(dropdown_value, df_json, subject, message_text, manual_email):
if not dropdown_value:
return "No contact selected.", ""
try:
idx = int(str(dropdown_value).split(" β€” ")[0])
rows = pd.DataFrame(df_json)
contact = rows.iloc[idx].to_dict()
# choose recipient from manual_email if provided & valid, else scraped email
recipient = None
if manual_email and EMAIL_REGEX.search(manual_email):
recipient = manual_email.strip()
else:
recipient = contact.get("email") if contact.get("email") and contact.get("email")!="Not found" else "[no email]"
org_display = contact.get('org') or contact.get('url') or "(no org)"
html = f"""
<h3>Preview</h3>
<b>To:</b> {recipient}<br/>
<b>Organization:</b> <a href="{contact.get('url')}" target="_blank" rel="noopener">{org_display}</a><br/>
<b>Profession tag:</b> {contact.get('profession')}<br/>
<b>Subject:</b> {subject}<br/>
<hr/>
<pre style="white-space:pre-wrap;">{message_text}</pre>
"""
text = f"To: {recipient}\nOrganization: {org_display}\nSubject: {subject}\n\n{message_text[:600]}{'...' if len(message_text)>600 else ''}"
return text, html
except Exception as e:
return f"Preview error: {e}", ""
def confirm_action(mode, dropdown_value, df_json, subject, message_text,
user_email, sender_email, sender_password, logo_url, manual_email):
"""
mode: "Draft only" or "Send via SMTP (Gmail)"
manual_email: optional override to use when scraped email not found
"""
if not dropdown_value:
return "❌ No contact selected.", "", None
# locate contact
try:
idx = int(str(dropdown_value).split(" β€” ")[0])
rows = pd.DataFrame(df_json)
contact = rows.iloc[idx].to_dict()
except Exception as e:
return f"❌ Selection error: {e}", "", None
scraped_recipient = contact.get("email")
# use manual if valid
recipient = None
if manual_email and EMAIL_REGEX.search(manual_email):
recipient = manual_email.strip()
elif scraped_recipient and scraped_recipient != "Not found":
recipient = scraped_recipient
if mode.startswith("Send"):
# Validate required fields
if not recipient:
return "❌ No recipient email found β€” either pick a contact with an email or provide a manual email.", "", None
if not user_email or "@" not in user_email:
return "❌ Please enter your email (so the organisation can contact you).", "", None
if not sender_email or not sender_password:
return "❌ Sender email and app password are required for SMTP sending.", "", None
status = send_ally_ai_email(
to_email=recipient,
subject=subject,
body=message_text,
user_email=user_email,
sender_email=sender_email,
sender_password=sender_password,
ai_name=ALLY_AI_NAME,
logo_url=logo_url or ALLY_AI_LOGO_URL_DEFAULT
)
_, eml_path = build_mailto_and_eml(recipient, subject, message_text, default_from=sender_email)
file_out = eml_path if eml_path and os.path.exists(eml_path) else None
return status, "", file_out
else:
# Draft-only path (mailto + .eml)
recip_for_draft = recipient or ""
mailto, eml_path = build_mailto_and_eml(recip_for_draft, subject, message_text, default_from="noreply@ally.ai")
if eml_path and os.path.exists(eml_path) and os.path.getsize(eml_path) > 0:
html_link = f'<a href="{mailto}" target="_blank" rel="noopener">Open draft in email client</a>'
file_out = eml_path
return "βœ… Draft created (no email sent).", html_link, file_out
elif eml_path and os.path.exists(eml_path):
# file exists but is empty
return "⚠️ Draft file created but it's empty. Check the message body or try manual email.", "", eml_path
else:
return "❌ Failed to create draft file.", "", None
with gr.Blocks() as demo:
gr.Markdown("## Ally AI β€” GBV Help Finder & Email Assistant\n"
"This tool searches local professionals/organizations lets you select a contact or enter an email manually, and creates an email draft or sends a branded email via Gmail"
"**Privacy tip:** Prefer anonymized summaries unless you’re comfortable sharing details.")
with gr.Row():
story_in = gr.Textbox(label="Your story (free text)", lines=6, placeholder="Describe your situation and the help you want...")
country_in = gr.Textbox(value=DEFAULT_COUNTRY, label="Country (to bias search)")
search_btn = gr.Button("Search for professionals")
summary_out = gr.Textbox(label="Search summary (AI)", interactive=False)
# updated headers: use org (organization name) instead of article title
results_table = gr.Dataframe(headers=["org","url","email","phone","profession","source_query"], label="Search results")
dropdown_sel = gr.Dropdown(label="Select organization (from results)", choices=[])
with gr.Row():
use_anon = gr.Checkbox(value=True, label="Use anonymized summary (recommended)")
anon_out = gr.Textbox(label="Anonymized summary", lines=3)
user_email_in = gr.Textbox(label="Your email (for the organisation to reply to you)")
gr.Markdown("### Compose message")
subject_in = gr.Textbox(value="Request for GBV support", label="Email subject")
message_in = gr.Textbox(label="Message body", lines=10)
# Manual override for organization email (new)
manual_email_in = gr.Textbox(label="Manual org email (optional)")
with gr.Accordion("Sending options (for automatic sending via Ally AI SMTP)", open=False):
mode = gr.Radio(choices=["Draft only (mailto + .eml)", "Send via SMTP (Gmail)"], value="Draft only (mailto + .eml)", label="Delivery mode")
sender_email_in = gr.Textbox(label="Ally AI sender email (Gmail account)")
sender_pass_in = gr.Textbox(label="Ally AI sender app password", type="password")
logo_url_in = gr.Textbox(value=ALLY_AI_LOGO_URL_DEFAULT, label="Ally AI logo URL")
with gr.Row():
preview_btn = gr.Button("Preview")
confirm_btn = gr.Button("Confirm (Create Draft or Send)")
preview_text_out = gr.Textbox(label="Preview (text)", interactive=False)
preview_html_out = gr.HTML()
status_out = gr.Textbox(label="Status", interactive=False)
mailto_html_out = gr.HTML()
eml_file_out = gr.File(label="Download .eml")
# Wire: Search
def _on_search(story, country):
s, records, options, anon = run_search(story, country)
prefill = make_body(anon, story, True, "") # user email unknown yet
# return updated dropdown choices (value is first option)
return s, records, gr.update(choices=options, value=(options[0] if options else None)), anon, prefill
search_btn.click(_on_search,
inputs=[story_in, country_in],
outputs=[summary_out, results_table, dropdown_sel, anon_out, message_in])
# When user toggles anonymized vs full story, refresh the message body
def _refresh_body(use_anon_flag, anon_text, story, user_email):
return make_body(anon_text, story, use_anon_flag, user_email)
use_anon.change(_refresh_body, inputs=[use_anon, anon_out, story_in, user_email_in], outputs=message_in)
user_email_in.change(_refresh_body, inputs=[use_anon, anon_out, story_in, user_email_in], outputs=message_in)
anon_out.change(_refresh_body, inputs=[use_anon, anon_out, story_in, user_email_in], outputs=message_in)
story_in.change(_refresh_body, inputs=[use_anon, anon_out, story_in, user_email_in], outputs=message_in)
# Preview
preview_btn.click(preview_contact,
inputs=[dropdown_sel, results_table, subject_in, message_in, manual_email_in],
outputs=[preview_text_out, preview_html_out])
# Confirm (create draft or send) - manual_email_in passed as last arg
confirm_btn.click(confirm_action,
inputs=[mode, dropdown_sel, results_table, subject_in, message_in,
user_email_in, sender_email_in, sender_pass_in, logo_url_in, manual_email_in],
outputs=[status_out, mailto_html_out, eml_file_out])
demo.launch(share=False)