Spaces:
Running
Running
| import os | |
| import time | |
| import re | |
| import requests | |
| import phonenumbers | |
| import pandas as pd | |
| import urllib.parse | |
| from bs4 import BeautifulSoup | |
| import torch | |
| from transformers import ( | |
| AutoTokenizer, | |
| AutoModelForTokenClassification, | |
| AutoModelForSeq2SeqLM, | |
| pipeline | |
| ) | |
| import gradio as gr | |
| from concurrent.futures import ThreadPoolExecutor, as_completed | |
| from email.message import EmailMessage | |
| import smtplib | |
| from email.mime.multipart import MIMEMultipart | |
| from email.mime.text import MIMEText | |
| # ============================ | |
| # CONFIG | |
| # ============================ | |
| API_KEY = os.environ.get("GOOGLE_API_KEY", "YOUR_GOOGLE_API_KEY") | |
| CX = os.environ.get("GOOGLE_CSE_ID", "YOUR_CSE_ID") | |
| DEFAULT_COUNTRY = "Ghana" | |
| RESULTS_PER_QUERY = int(os.environ.get("RESULTS_PER_QUERY", 4)) | |
| MAX_SCRAPE_WORKERS = int(os.environ.get("MAX_SCRAPE_WORKERS", 6)) | |
| ALLY_AI_NAME = os.environ.get("ALLY_AI_NAME", "Ally AI") | |
| ALLY_AI_LOGO_URL_DEFAULT = os.environ.get("ALLY_AI_LOGO_URL", | |
| "https://imgur.com/a/lVxnQke") | |
| COUNTRY_TLD_MAP = {"Ghana":"gh","Nigeria":"ng","Kenya":"ke","South Africa":"za","USA":"us","United Kingdom":"uk"} | |
| COUNTRY_REGION_MAP= {"Ghana":"GH","Nigeria":"NG","Kenya":"KE","South Africa":"ZA","USA":"US","United Kingdom":"GB"} | |
| HEADERS = {"User-Agent":"Mozilla/5.0 (X11; Linux x86_64)"} | |
| EMAIL_REGEX = re.compile(r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}") | |
| # ============================ | |
| # MODELS (lightweight & CPU-friendly) | |
| # ============================ | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| print("Device set to use", DEVICE) | |
| # NER model (people/orgs/locs) | |
| ner_model_id = "dslim/bert-base-NER" | |
| ner_tokenizer = AutoTokenizer.from_pretrained(ner_model_id) | |
| ner_model = AutoModelForTokenClassification.from_pretrained(ner_model_id) | |
| ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple", | |
| device=0 if DEVICE=="cuda" else -1) | |
| # Summarizer / anonymizer | |
| text_model_id = "google/flan-t5-large" | |
| text_tokenizer = AutoTokenizer.from_pretrained(text_model_id) | |
| text_model = AutoModelForSeq2SeqLM.from_pretrained(text_model_id).to(DEVICE) | |
| # ============================ | |
| # TAXONOMY & HELPERS | |
| # ============================ | |
| PROFESSION_KEYWORDS = ["lawyer","therapist","doctor","counselor","social worker", | |
| "advocate","psychologist","psychiatrist","consultant","nurse","hotline","gbv"] | |
| PROBLEM_PROFESSION_MAP = { | |
| "rape": ["lawyer","therapist","counselor","doctor"], | |
| "sexual assault": ["lawyer","therapist","counselor"], | |
| "domestic violence": ["lawyer","social worker","therapist"], | |
| "abuse": ["counselor","social worker","therapist","lawyer"], | |
| "trauma": ["therapist","psychologist","psychiatrist"], | |
| "depression": ["therapist","psychologist","doctor"], | |
| "violence": ["lawyer","counselor","social worker"], | |
| } | |
| def get_region_for_country(country: str) -> str: | |
| return COUNTRY_REGION_MAP.get(country, "GH") | |
| def get_tld_for_country(country: str) -> str: | |
| return COUNTRY_TLD_MAP.get(country, "") | |
| def build_country_biased_query(core: str, country: str) -> str: | |
| tld = get_tld_for_country(country) | |
| suffix = f" in {country}" | |
| if tld: | |
| return f"{core}{suffix} site:.{tld} OR {country}" | |
| return f"{core}{suffix}" | |
| def dedup_by_url(items): | |
| seen, out = set(), [] | |
| for it in items: | |
| u = it.get("link") or it.get("url") | |
| if u and u not in seen: | |
| seen.add(u) | |
| out.append(it) | |
| return out | |
| # ============================ | |
| # SEARCH & SCRAPING | |
| # ============================ | |
| def google_search(query, num_results=5): | |
| if not API_KEY or not CX or "YOUR_GOOGLE_API_KEY" in API_KEY or "YOUR_CSE_ID" in CX: | |
| raise RuntimeError("Google API key and CSE ID must be set as environment variables.") | |
| url = "https://www.googleapis.com/customsearch/v1" | |
| params = {"q":query, "key":API_KEY, "cx":CX, "num":num_results} | |
| r = requests.get(url, params=params, timeout=20) | |
| r.raise_for_status() | |
| items = r.json().get("items", []) or [] | |
| return [{"title":i.get("title",""), "link":i.get("link",""), "snippet":i.get("snippet","")} for i in items] | |
| def extract_phones(text, region="GH"): | |
| phones = [] | |
| for match in phonenumbers.PhoneNumberMatcher(text, region): | |
| try: | |
| phones.append(phonenumbers.format_number(match.number, phonenumbers.PhoneNumberFormat.INTERNATIONAL)) | |
| except Exception: | |
| pass | |
| return list(set(phones)) | |
| def _domain_from_url(url): | |
| try: | |
| return urllib.parse.urlparse(url).netloc | |
| except Exception: | |
| return url | |
| def scrape_contacts(url, region="GH"): | |
| """ | |
| Extended scraping: returns emails, phones, and a guessed 'org' name | |
| extracted from meta tags, headings, or via NER on page text. | |
| """ | |
| try: | |
| res = requests.get(url, headers=HEADERS, timeout=12) | |
| if not res.ok or not res.text: | |
| return {"emails": [], "phones": [], "org": None} | |
| soup = BeautifulSoup(res.text, "html.parser") | |
| # raw text for phone/email/NER | |
| text = soup.get_text(separator=" ") | |
| text = " ".join(text.split())[:300000] | |
| # emails & phones | |
| emails = list(set(EMAIL_REGEX.findall(text))) | |
| phones = extract_phones(text, region) | |
| # try meta og:site_name or twitter site meta | |
| org_name = None | |
| meta_og = soup.find("meta", property="og:site_name") or soup.find("meta", attrs={"name":"og:site_name"}) | |
| if meta_og and meta_og.get("content"): | |
| org_name = meta_og.get("content").strip() | |
| # fallback to <title> or first <h1> | |
| if not org_name: | |
| title_tag = soup.find("title") | |
| if title_tag and title_tag.get_text(strip=True): | |
| org_name = title_tag.get_text(strip=True) | |
| if not org_name: | |
| h1 = soup.find("h1") | |
| if h1 and h1.get_text(strip=True): | |
| org_name = h1.get_text(strip=True) | |
| # run NER to find ORG mentions in the page text and prefer that if short and clean | |
| try: | |
| people, orgs, locs = extract_entities(text) | |
| if orgs: | |
| # choose first short/clean org | |
| for o in orgs: | |
| if len(o) > 1 and len(o) < 80: | |
| org_name = o | |
| break | |
| except Exception: | |
| pass | |
| # final fallback: domain | |
| if not org_name: | |
| org_name = _domain_from_url(url) | |
| return {"emails": emails, "phones": phones, "org": org_name} | |
| except Exception as e: | |
| print(f"[scrape error] {url} -> {e}") | |
| return {"emails": [], "phones": [], "org": _domain_from_url(url)} | |
| # ============================ | |
| # NER + STORY β PROFESSIONS | |
| # ============================ | |
| def extract_entities(text): | |
| if not text: | |
| return [],[],[] | |
| try: | |
| ner_results = ner_pipe(text) | |
| except Exception as e: | |
| print("[ner error]", e) | |
| return [],[],[] | |
| people = [e["word"] for e in ner_results if e.get("entity_group") == "PER"] | |
| orgs = [e["word"] for e in ner_results if e.get("entity_group") == "ORG"] | |
| locs = [e["word"] for e in ner_results if e.get("entity_group") == "LOC"] | |
| return list(set(people)), list(set(orgs)), list(set(locs)) | |
| def professions_from_story(story: str): | |
| s = (story or "").lower() | |
| found = set([p for p in PROFESSION_KEYWORDS if p in s]) | |
| for prob, profs in PROBLEM_PROFESSION_MAP.items(): | |
| if prob in s: | |
| found.update(profs) | |
| if not found: | |
| return ["gbv","counselor"] | |
| order = ["lawyer","therapist","counselor","social worker","psychologist","psychiatrist","doctor","advocate","nurse","hotline","gbv"] | |
| return [p for p in order if p in found] | |
| def build_queries(story: str, country: str): | |
| profs = professions_from_story(story) | |
| cores = [] | |
| for p in profs: | |
| if p == "gbv": | |
| cores += ["GBV support organizations", "gender based violence help"] | |
| else: | |
| cores += [f"{p} for GBV", f"{p} for sexual assault", f"{p} near me {p} {country}"] | |
| unique_cores, seen = [], set() | |
| for c in cores: | |
| if c not in seen: | |
| unique_cores.append(c); seen.add(c) | |
| return [build_country_biased_query(core, country) for core in unique_cores], profs | |
| # ============================ | |
| # TEXT GEN: anonymize + result summary | |
| # ============================ | |
| def anonymize_story(story: str, max_sentences: int = 2): | |
| if not story or not story.strip(): | |
| return "" | |
| prompt = ( | |
| "Anonymize and shorten the following personal story for contacting professionals. " | |
| "Remove names, exact ages, dates, locations and any identifying details. " | |
| f"Keep only the essential problem and the type of help requested. Output <= {max_sentences} sentences.\n\n" | |
| f"Story: {story}\n\nSummary:" | |
| ) | |
| inputs = text_tokenizer(prompt, return_tensors="pt").to(DEVICE) | |
| with torch.no_grad(): | |
| outputs = text_model.generate(**inputs, max_new_tokens=120, temperature=0.2) | |
| return text_tokenizer.decode(outputs[0], skip_special_tokens=True).strip() | |
| def generate_summary(query, people, orgs, locs): | |
| prompt = ( | |
| "Write a short, empathetic summary of these search results for a person seeking GBV help.\n" | |
| f"Query: {query}\nPeople: {', '.join(people) or 'β'}\nOrgs: {', '.join(orgs) or 'β'}\nLocations: {', '.join(locs) or 'β'}\n\n" | |
| "Explain how the organizations/professionals can help in 3-4 sentences." | |
| ) | |
| inputs = text_tokenizer(prompt, return_tensors="pt").to(DEVICE) | |
| with torch.no_grad(): | |
| outputs = text_model.generate(**inputs, max_new_tokens=150, temperature=0.7) | |
| return text_tokenizer.decode(outputs[0], skip_special_tokens=True).strip() | |
| # ============================ | |
| # MAIN PIPELINE | |
| # ============================ | |
| def find_professionals_from_story(story, country=DEFAULT_COUNTRY, results_per_query=RESULTS_PER_QUERY): | |
| region = get_region_for_country(country) | |
| queries, profs = build_queries(story, country) | |
| # Search | |
| search_results = [] | |
| for q in queries: | |
| try: | |
| items = google_search(q, num_results=results_per_query) | |
| for it in items: | |
| it["query"] = q | |
| search_results.extend(items) | |
| except Exception as e: | |
| print("[search error]", q, e) | |
| search_results = dedup_by_url(search_results) | |
| if not search_results: | |
| return {"summary":"No results found. Try a different country or wording.", | |
| "professionals":[], "queries_used":queries} | |
| # NER on titles/snippets for context | |
| all_people, all_orgs, all_locs = [], [], [] | |
| for r in search_results: | |
| ctx = f"{r.get('title','')}. {r.get('snippet','')}" | |
| p,o,l = extract_entities(ctx) | |
| all_people += p; all_orgs += o; all_locs += l | |
| # Scrape contacts concurrently, extracting org names from page content | |
| professionals = [] | |
| with ThreadPoolExecutor(max_workers=MAX_SCRAPE_WORKERS) as ex: | |
| futures = {ex.submit(scrape_contacts, r["link"], region): r for r in search_results} | |
| for fut in as_completed(futures): | |
| r = futures[fut] | |
| contacts = {"emails": [], "phones": [], "org": None} | |
| try: | |
| contacts = fut.result() | |
| except Exception as e: | |
| print("[scrape future error]", r["link"], e) | |
| # choose a single email/phone if available | |
| email = contacts["emails"][0] if contacts.get("emails") else None | |
| phone = contacts["phones"][0] if contacts.get("phones") else None | |
| org_name = contacts.get("org") or "" | |
| # attempt to choose profession tag from the query used | |
| prof_tag = None | |
| qlower = (r.get("query") or "").lower() | |
| for p in professions_from_story(story): | |
| if p in qlower: | |
| prof_tag = p | |
| break | |
| prof_tag = prof_tag or (professions_from_story(story)[0] if professions_from_story(story) else "gbv") | |
| professionals.append({ | |
| "org": org_name, | |
| "url": r.get("link",""), | |
| "email": email if email else "Not found", | |
| "phone": phone if phone else "Not found", | |
| "profession": prof_tag, | |
| "source_query": r.get("query","") | |
| }) | |
| summary = generate_summary("; ".join(queries[:3]) + (" ..." if len(queries)>3 else ""), | |
| list(set(all_people)), list(set(all_orgs)), list(set(all_locs))) | |
| # Sort by availability of email/phone | |
| professionals.sort(key=lambda it: (0 if it["email"]!="Not found" else 1, | |
| 0 if it["phone"]!="Not found" else 1)) | |
| return {"summary": summary, "professionals": professionals, "queries_used": queries} | |
| # ============================ | |
| # DRAFT (mailto + .eml) | |
| # ============================ | |
| def build_mailto_and_eml(to_addr, subject, body, default_from="noreply@ally.ai"): | |
| """ | |
| Creates a proper .eml file and returns (mailto_link, absolute_eml_path). | |
| Ensures the file is actually written and non-empty. If .eml fails, writes a .txt fallback. | |
| """ | |
| # sanitize inputs | |
| to_addr = (to_addr or "").strip() | |
| subject = subject or "" | |
| body = body or "" | |
| # Create EmailMessage object | |
| msg = EmailMessage() | |
| msg["From"] = default_from | |
| msg["To"] = to_addr | |
| msg["Subject"] = subject | |
| msg.set_content(body) | |
| # ensure output dir exists and use absolute path (more robust for HF Spaces / Colab) | |
| out_dir = os.path.abspath("tmp") | |
| os.makedirs(out_dir, exist_ok=True) | |
| fname = os.path.join(out_dir, f"email_draft_{int(time.time())}.eml") | |
| try: | |
| # write bytes | |
| with open(fname, "wb") as f: | |
| f.write(msg.as_bytes()) | |
| # verify file exists and is non-empty | |
| if os.path.exists(fname) and os.path.getsize(fname) > 0: | |
| mailto = f"mailto:{urllib.parse.quote(to_addr)}?subject={urllib.parse.quote(subject)}&body={urllib.parse.quote(body)}" | |
| return mailto, fname | |
| # fallback: create a plain text copy (useful for debugging) | |
| fallback = fname + ".txt" | |
| with open(fallback, "w", encoding="utf-8") as f: | |
| f.write(f"To: {to_addr}\nSubject: {subject}\n\n{body}") | |
| mailto = f"mailto:{urllib.parse.quote(to_addr)}?subject={urllib.parse.quote(subject)}&body={urllib.parse.quote(body)}" | |
| return mailto, fallback | |
| except Exception as e: | |
| # If writing .eml fails entirely, create a .txt fallback and return that path | |
| fallback = os.path.join(out_dir, f"email_draft_{int(time.time())}.txt") | |
| try: | |
| with open(fallback, "w", encoding="utf-8") as f: | |
| f.write(f"Error writing .eml: {e}\n\nTo: {to_addr}\nSubject: {subject}\n\n{body}") | |
| mailto = f"mailto:{urllib.parse.quote(to_addr)}?subject={urllib.parse.quote(subject)}&body={urllib.parse.quote(body)}" | |
| return mailto, fallback | |
| except Exception as e2: | |
| # ultimate fallback: return no file and an informative mailto | |
| mailto = f"mailto:{urllib.parse.quote(to_addr)}?subject={urllib.parse.quote(subject)}&body={urllib.parse.quote(body)}" | |
| return mailto, None | |
| # ============================ | |
| # SENDER (SMTP) β Ally AI branding | |
| # ============================ | |
| def send_ally_ai_email(to_email, subject, body, user_email, | |
| sender_email, sender_password, | |
| ai_name=ALLY_AI_NAME, | |
| logo_url=ALLY_AI_LOGO_URL_DEFAULT): | |
| if not to_email or to_email == "Not found": | |
| return "β No recipient email found β choose a contact or provide a manual email." | |
| msg = MIMEMultipart("alternative") | |
| msg["Subject"] = subject or "Request for support" | |
| msg["From"] = f"{ai_name} <{sender_email}>" | |
| msg["To"] = to_email | |
| html_content = f""" | |
| <html> | |
| <body style="font-family: Arial, sans-serif; color: #333;"> | |
| <div style="padding: 20px; border: 1px solid #eee; border-radius: 10px; max-width: 640px; margin: auto;"> | |
| <div style="text-align: center;"> | |
| <img src="{logo_url}" alt="{ai_name} Logo" width="120" style="margin-bottom: 20px;" /> | |
| </div> | |
| <p>{body}</p> | |
| <p style="margin-top:20px;"> | |
| <b>Contact the survivor back at:</b> <a href="mailto:{user_email}">{user_email}</a> | |
| </p> | |
| <hr style="border:none;border-top:1px solid #eee;margin:24px 0;"> | |
| <p style="font-size: 12px; color: gray; text-align: center;"> | |
| This message was prepared with the help of <b>{ai_name}</b> β connecting survivors with help safely. | |
| </p> | |
| </div> | |
| </body> | |
| </html> | |
| """ | |
| msg.attach(MIMEText(html_content, "html")) | |
| try: | |
| server = smtplib.SMTP("smtp.gmail.com", 587) | |
| server.starttls() | |
| server.login(sender_email, sender_password) | |
| server.sendmail(sender_email, [to_email], msg.as_string()) | |
| server.quit() | |
| return f"β Email sent successfully to {to_email}" | |
| except Exception as e: | |
| return f"β Failed to send email: {str(e)}" | |
| # ============================ | |
| # GRADIO UI | |
| # ============================ | |
| def run_search(story, country): | |
| try: | |
| out = find_professionals_from_story(story, country=country, results_per_query=RESULTS_PER_QUERY) | |
| except Exception as e: | |
| err_msg = f"Search failed: {e}" | |
| placeholder = ["0 β No results (search failed)"] | |
| return err_msg, [], placeholder, "" | |
| pros = out.get("professionals", []) or [] | |
| # build table records with org instead of article title | |
| try: | |
| records = pd.DataFrame(pros).to_dict(orient="records") if pros else [] | |
| except Exception: | |
| records = [] | |
| # build dropdown options as list of strings | |
| options = [] | |
| for i, r in enumerate(pros): | |
| label_contact = r.get("email") if r.get("email") and r.get("email") != "Not found" else (r.get("phone", "No contact")) | |
| org_label = r.get("org") or r.get("url") or "(no org)" | |
| label = f"{i} β {org_label} ({label_contact})" | |
| options.append(label) | |
| if not options: | |
| options = ["0 β No results (try a different country/query)"] | |
| # anonymize safely | |
| try: | |
| anon = anonymize_story(story) or "I am seeking confidential support regarding gender-based violence." | |
| except Exception as e: | |
| print("[anonymize error]", e) | |
| anon = "I am seeking confidential support regarding gender-based violence." | |
| summary = out.get("summary", "No results found.") | |
| return summary, records, options, anon | |
| def make_body(anon_text, full_story, use_anon, user_email): | |
| core = (anon_text or "").strip() if use_anon else (full_story or "").strip() | |
| lines = [ | |
| core, | |
| "", | |
| f"Reply contact: {user_email}", | |
| "", | |
| "Thank you." | |
| ] | |
| return "\n".join([l for l in lines if l is not None]) | |
| def preview_contact(dropdown_value, df_json, subject, message_text, manual_email): | |
| if not dropdown_value: | |
| return "No contact selected.", "" | |
| try: | |
| idx = int(str(dropdown_value).split(" β ")[0]) | |
| rows = pd.DataFrame(df_json) | |
| contact = rows.iloc[idx].to_dict() | |
| # choose recipient from manual_email if provided & valid, else scraped email | |
| recipient = None | |
| if manual_email and EMAIL_REGEX.search(manual_email): | |
| recipient = manual_email.strip() | |
| else: | |
| recipient = contact.get("email") if contact.get("email") and contact.get("email")!="Not found" else "[no email]" | |
| org_display = contact.get('org') or contact.get('url') or "(no org)" | |
| html = f""" | |
| <h3>Preview</h3> | |
| <b>To:</b> {recipient}<br/> | |
| <b>Organization:</b> <a href="{contact.get('url')}" target="_blank" rel="noopener">{org_display}</a><br/> | |
| <b>Profession tag:</b> {contact.get('profession')}<br/> | |
| <b>Subject:</b> {subject}<br/> | |
| <hr/> | |
| <pre style="white-space:pre-wrap;">{message_text}</pre> | |
| """ | |
| text = f"To: {recipient}\nOrganization: {org_display}\nSubject: {subject}\n\n{message_text[:600]}{'...' if len(message_text)>600 else ''}" | |
| return text, html | |
| except Exception as e: | |
| return f"Preview error: {e}", "" | |
| def confirm_action(mode, dropdown_value, df_json, subject, message_text, | |
| user_email, sender_email, sender_password, logo_url, manual_email): | |
| """ | |
| mode: "Draft only" or "Send via SMTP (Gmail)" | |
| manual_email: optional override to use when scraped email not found | |
| """ | |
| if not dropdown_value: | |
| return "β No contact selected.", "", None | |
| # locate contact | |
| try: | |
| idx = int(str(dropdown_value).split(" β ")[0]) | |
| rows = pd.DataFrame(df_json) | |
| contact = rows.iloc[idx].to_dict() | |
| except Exception as e: | |
| return f"β Selection error: {e}", "", None | |
| scraped_recipient = contact.get("email") | |
| # use manual if valid | |
| recipient = None | |
| if manual_email and EMAIL_REGEX.search(manual_email): | |
| recipient = manual_email.strip() | |
| elif scraped_recipient and scraped_recipient != "Not found": | |
| recipient = scraped_recipient | |
| if mode.startswith("Send"): | |
| # Validate required fields | |
| if not recipient: | |
| return "β No recipient email found β either pick a contact with an email or provide a manual email.", "", None | |
| if not user_email or "@" not in user_email: | |
| return "β Please enter your email (so the organisation can contact you).", "", None | |
| if not sender_email or not sender_password: | |
| return "β Sender email and app password are required for SMTP sending.", "", None | |
| status = send_ally_ai_email( | |
| to_email=recipient, | |
| subject=subject, | |
| body=message_text, | |
| user_email=user_email, | |
| sender_email=sender_email, | |
| sender_password=sender_password, | |
| ai_name=ALLY_AI_NAME, | |
| logo_url=logo_url or ALLY_AI_LOGO_URL_DEFAULT | |
| ) | |
| _, eml_path = build_mailto_and_eml(recipient, subject, message_text, default_from=sender_email) | |
| file_out = eml_path if eml_path and os.path.exists(eml_path) else None | |
| return status, "", file_out | |
| else: | |
| # Draft-only path (mailto + .eml) | |
| recip_for_draft = recipient or "" | |
| mailto, eml_path = build_mailto_and_eml(recip_for_draft, subject, message_text, default_from="noreply@ally.ai") | |
| if eml_path and os.path.exists(eml_path) and os.path.getsize(eml_path) > 0: | |
| html_link = f'<a href="{mailto}" target="_blank" rel="noopener">Open draft in email client</a>' | |
| file_out = eml_path | |
| return "β Draft created (no email sent).", html_link, file_out | |
| elif eml_path and os.path.exists(eml_path): | |
| # file exists but is empty | |
| return "β οΈ Draft file created but it's empty. Check the message body or try manual email.", "", eml_path | |
| else: | |
| return "β Failed to create draft file.", "", None | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## Ally AI β GBV Help Finder & Email Assistant\n" | |
| "This tool searches local professionals/organizations lets you select a contact or enter an email manually, and creates an email draft or sends a branded email via Gmail" | |
| "**Privacy tip:** Prefer anonymized summaries unless youβre comfortable sharing details.") | |
| with gr.Row(): | |
| story_in = gr.Textbox(label="Your story (free text)", lines=6, placeholder="Describe your situation and the help you want...") | |
| country_in = gr.Textbox(value=DEFAULT_COUNTRY, label="Country (to bias search)") | |
| search_btn = gr.Button("Search for professionals") | |
| summary_out = gr.Textbox(label="Search summary (AI)", interactive=False) | |
| # updated headers: use org (organization name) instead of article title | |
| results_table = gr.Dataframe(headers=["org","url","email","phone","profession","source_query"], label="Search results") | |
| dropdown_sel = gr.Dropdown(label="Select organization (from results)", choices=[]) | |
| with gr.Row(): | |
| use_anon = gr.Checkbox(value=True, label="Use anonymized summary (recommended)") | |
| anon_out = gr.Textbox(label="Anonymized summary", lines=3) | |
| user_email_in = gr.Textbox(label="Your email (for the organisation to reply to you)") | |
| gr.Markdown("### Compose message") | |
| subject_in = gr.Textbox(value="Request for GBV support", label="Email subject") | |
| message_in = gr.Textbox(label="Message body", lines=10) | |
| # Manual override for organization email (new) | |
| manual_email_in = gr.Textbox(label="Manual org email (optional)") | |
| with gr.Accordion("Sending options (for automatic sending via Ally AI SMTP)", open=False): | |
| mode = gr.Radio(choices=["Draft only (mailto + .eml)", "Send via SMTP (Gmail)"], value="Draft only (mailto + .eml)", label="Delivery mode") | |
| sender_email_in = gr.Textbox(label="Ally AI sender email (Gmail account)") | |
| sender_pass_in = gr.Textbox(label="Ally AI sender app password", type="password") | |
| logo_url_in = gr.Textbox(value=ALLY_AI_LOGO_URL_DEFAULT, label="Ally AI logo URL") | |
| with gr.Row(): | |
| preview_btn = gr.Button("Preview") | |
| confirm_btn = gr.Button("Confirm (Create Draft or Send)") | |
| preview_text_out = gr.Textbox(label="Preview (text)", interactive=False) | |
| preview_html_out = gr.HTML() | |
| status_out = gr.Textbox(label="Status", interactive=False) | |
| mailto_html_out = gr.HTML() | |
| eml_file_out = gr.File(label="Download .eml") | |
| # Wire: Search | |
| def _on_search(story, country): | |
| s, records, options, anon = run_search(story, country) | |
| prefill = make_body(anon, story, True, "") # user email unknown yet | |
| # return updated dropdown choices (value is first option) | |
| return s, records, gr.update(choices=options, value=(options[0] if options else None)), anon, prefill | |
| search_btn.click(_on_search, | |
| inputs=[story_in, country_in], | |
| outputs=[summary_out, results_table, dropdown_sel, anon_out, message_in]) | |
| # When user toggles anonymized vs full story, refresh the message body | |
| def _refresh_body(use_anon_flag, anon_text, story, user_email): | |
| return make_body(anon_text, story, use_anon_flag, user_email) | |
| use_anon.change(_refresh_body, inputs=[use_anon, anon_out, story_in, user_email_in], outputs=message_in) | |
| user_email_in.change(_refresh_body, inputs=[use_anon, anon_out, story_in, user_email_in], outputs=message_in) | |
| anon_out.change(_refresh_body, inputs=[use_anon, anon_out, story_in, user_email_in], outputs=message_in) | |
| story_in.change(_refresh_body, inputs=[use_anon, anon_out, story_in, user_email_in], outputs=message_in) | |
| # Preview | |
| preview_btn.click(preview_contact, | |
| inputs=[dropdown_sel, results_table, subject_in, message_in, manual_email_in], | |
| outputs=[preview_text_out, preview_html_out]) | |
| # Confirm (create draft or send) - manual_email_in passed as last arg | |
| confirm_btn.click(confirm_action, | |
| inputs=[mode, dropdown_sel, results_table, subject_in, message_in, | |
| user_email_in, sender_email_in, sender_pass_in, logo_url_in, manual_email_in], | |
| outputs=[status_out, mailto_html_out, eml_file_out]) | |
| demo.launch(share=False) | |