Spaces:
Sleeping
Sleeping
File size: 13,914 Bytes
51841ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import os
from options.test_options import TestOptions
from data import CreateDataLoader
from models import create_model
from util.visualizer import save_crop
from util import html
import numpy as np
import math
from PIL import Image
import torchvision.transforms as transforms
import torch
import random
import cv2
import dlib
from skimage import transform as trans
from skimage import io
from data.image_folder import make_dataset
import sys
sys.path.append('FaceLandmarkDetection')
import face_alignment
###########################################################################
################# functions of crop and align face images #################
###########################################################################
def get_5_points(img):
dets = detector(img, 1)
if len(dets) == 0:
return None
areas = []
if len(dets) > 1:
print('\t###### Warning: more than one face is detected. In this version, we only handle the largest one.')
for i in range(len(dets)):
area = (dets[i].rect.right()-dets[i].rect.left())*(dets[i].rect.bottom()-dets[i].rect.top())
areas.append(area)
ins = areas.index(max(areas))
shape = sp(img, dets[ins].rect)
single_points = []
for i in range(5):
single_points.append([shape.part(i).x, shape.part(i).y])
return np.array(single_points)
def align_and_save(img_path, save_path, save_input_path, save_param_path, upsample_scale=2):
out_size = (512, 512)
img = dlib.load_rgb_image(img_path)
h,w,_ = img.shape
source = get_5_points(img)
if source is None: #
print('\t################ No face is detected')
return
tform = trans.SimilarityTransform()
tform.estimate(source, reference)
M = tform.params[0:2,:]
crop_img = cv2.warpAffine(img, M, out_size)
io.imsave(save_path, crop_img) #save the crop and align face
io.imsave(save_input_path, img) #save the whole input image
tform2 = trans.SimilarityTransform()
tform2.estimate(reference, source*upsample_scale)
# inv_M = cv2.invertAffineTransform(M)
np.savetxt(save_param_path, tform2.params[0:2,:],fmt='%.3f') #save the inverse affine parameters
def reverse_align(input_path, face_path, param_path, save_path, upsample_scale=2):
out_size = (512, 512)
input_img = dlib.load_rgb_image(input_path)
h,w,_ = input_img.shape
face512 = dlib.load_rgb_image(face_path)
inv_M = np.loadtxt(param_path)
inv_crop_img = cv2.warpAffine(face512, inv_M, (w*upsample_scale,h*upsample_scale))
mask = np.ones((512, 512, 3), dtype=np.float32) #* 255
inv_mask = cv2.warpAffine(mask, inv_M, (w*upsample_scale,h*upsample_scale))
upsample_img = cv2.resize(input_img, (w*upsample_scale, h*upsample_scale))
inv_mask_erosion_removeborder = cv2.erode(inv_mask, np.ones((2 * upsample_scale, 2 * upsample_scale), np.uint8))# to remove the black border
inv_crop_img_removeborder = inv_mask_erosion_removeborder * inv_crop_img
total_face_area = np.sum(inv_mask_erosion_removeborder)//3
w_edge = int(total_face_area ** 0.5) // 20 #compute the fusion edge based on the area of face
erosion_radius = w_edge * 2
inv_mask_center = cv2.erode(inv_mask_erosion_removeborder, np.ones((erosion_radius, erosion_radius), np.uint8))
blur_size = w_edge * 2
inv_soft_mask = cv2.GaussianBlur(inv_mask_center,(blur_size + 1, blur_size + 1),0)
merge_img = inv_soft_mask * inv_crop_img_removeborder + (1 - inv_soft_mask) * upsample_img
io.imsave(save_path, merge_img.astype(np.uint8))
###########################################################################
################ functions of preparing the test images ###################
###########################################################################
def AddUpSample(img):
return img.resize((512, 512), Image.BICUBIC)
def get_part_location(partpath, imgname):
Landmarks = []
if not os.path.exists(os.path.join(partpath,imgname+'.txt')):
print(os.path.join(partpath,imgname+'.txt'))
print('\t################ No landmark file')
return 0
with open(os.path.join(partpath,imgname+'.txt'),'r') as f:
for line in f:
tmp = [np.float(i) for i in line.split(' ') if i != '\n']
Landmarks.append(tmp)
Landmarks = np.array(Landmarks)
Map_LE = list(np.hstack((range(17,22), range(36,42))))
Map_RE = list(np.hstack((range(22,27), range(42,48))))
Map_NO = list(range(29,36))
Map_MO = list(range(48,68))
try:
#left eye
Mean_LE = np.mean(Landmarks[Map_LE],0)
L_LE = np.max((np.max(np.max(Landmarks[Map_LE],0) - np.min(Landmarks[Map_LE],0))/2,16))
Location_LE = np.hstack((Mean_LE - L_LE + 1, Mean_LE + L_LE)).astype(int)
#right eye
Mean_RE = np.mean(Landmarks[Map_RE],0)
L_RE = np.max((np.max(np.max(Landmarks[Map_RE],0) - np.min(Landmarks[Map_RE],0))/2,16))
Location_RE = np.hstack((Mean_RE - L_RE + 1, Mean_RE + L_RE)).astype(int)
#nose
Mean_NO = np.mean(Landmarks[Map_NO],0)
L_NO = np.max((np.max(np.max(Landmarks[Map_NO],0) - np.min(Landmarks[Map_NO],0))/2,16))
Location_NO = np.hstack((Mean_NO - L_NO + 1, Mean_NO + L_NO)).astype(int)
#mouth
Mean_MO = np.mean(Landmarks[Map_MO],0)
L_MO = np.max((np.max(np.max(Landmarks[Map_MO],0) - np.min(Landmarks[Map_MO],0))/2,16))
Location_MO = np.hstack((Mean_MO - L_MO + 1, Mean_MO + L_MO)).astype(int)
except:
return 0
return torch.from_numpy(Location_LE).unsqueeze(0), torch.from_numpy(Location_RE).unsqueeze(0), torch.from_numpy(Location_NO).unsqueeze(0), torch.from_numpy(Location_MO).unsqueeze(0)
def obtain_inputs(img_path, Landmark_path, img_name):
A_paths = os.path.join(img_path,img_name)
A = Image.open(A_paths).convert('RGB')
Part_locations = get_part_location(Landmark_path, img_name)
if Part_locations == 0:
return 0
C = A
A = AddUpSample(A)
A = transforms.ToTensor()(A)
C = transforms.ToTensor()(C)
A = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(A) #
C = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(C) #
return {'A':A.unsqueeze(0), 'C':C.unsqueeze(0), 'A_paths': A_paths,'Part_locations': Part_locations}
if __name__ == '__main__':
opt = TestOptions().parse()
opt.nThreads = 1 # test code only supports nThreads = 1
opt.batchSize = 1 # test code only supports batchSize = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
opt.display_id = -1 # no visdom display
opt.which_epoch = 'latest' #
#######################################################################
########################### Test Param ################################
#######################################################################
# opt.gpu_ids = [0] # gpu id. if use cpu, set opt.gpu_ids = []
# TestImgPath = './TestData/TestWhole' # test image path
# ResultsDir = './Results/TestWholeResults' #save path
# UpScaleWhole = 4 # the upsamle scale. It should be noted that our face results are fixed to 512.
TestImgPath = opt.test_path
ResultsDir = opt.results_dir
UpScaleWhole = opt.upscale_factor
print('\n###################### Now Running the X {} task ##############################'.format(UpScaleWhole))
#######################################################################
###########Step 1: Crop and Align Face from the whole Image ###########
#######################################################################
print('\n###############################################################################')
print('####################### Step 1: Crop and Align Face ###########################')
print('###############################################################################\n')
detector = dlib.cnn_face_detection_model_v1('./packages/mmod_human_face_detector.dat')
sp = dlib.shape_predictor('./packages/shape_predictor_5_face_landmarks.dat')
reference = np.load('./packages/FFHQ_template.npy') / 2
SaveInputPath = os.path.join(ResultsDir,'Step0_Input')
if not os.path.exists(SaveInputPath):
os.makedirs(SaveInputPath)
SaveCropPath = os.path.join(ResultsDir,'Step1_CropImg')
if not os.path.exists(SaveCropPath):
os.makedirs(SaveCropPath)
SaveParamPath = os.path.join(ResultsDir,'Step1_AffineParam') #save the inverse affine parameters
if not os.path.exists(SaveParamPath):
os.makedirs(SaveParamPath)
ImgPaths = make_dataset(TestImgPath)
for i, ImgPath in enumerate(ImgPaths):
ImgName = os.path.split(ImgPath)[-1]
print('Crop and Align {} image'.format(ImgName))
SavePath = os.path.join(SaveCropPath,ImgName)
SaveInput = os.path.join(SaveInputPath,ImgName)
SaveParam = os.path.join(SaveParamPath, ImgName+'.npy')
align_and_save(ImgPath, SavePath, SaveInput, SaveParam, UpScaleWhole)
#######################################################################
####### Step 2: Face Landmark Detection from the Cropped Image ########
#######################################################################
print('\n###############################################################################')
print('####################### Step 2: Face Landmark Detection #######################')
print('###############################################################################\n')
SaveLandmarkPath = os.path.join(ResultsDir,'Step2_Landmarks')
if len(opt.gpu_ids) > 0:
dev = 'cuda:{}'.format(opt.gpu_ids[0])
else:
dev = 'cpu'
FD = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D,device=dev, flip_input=False)
if not os.path.exists(SaveLandmarkPath):
os.makedirs(SaveLandmarkPath)
ImgPaths = make_dataset(SaveCropPath)
for i,ImgPath in enumerate(ImgPaths):
ImgName = os.path.split(ImgPath)[-1]
print('Detecting {}'.format(ImgName))
Img = io.imread(ImgPath)
try:
PredsAll = FD.get_landmarks(Img)
except:
print('\t################ Error in face detection, continue...')
continue
if PredsAll is None:
print('\t################ No face, continue...')
continue
ins = 0
if len(PredsAll)!=1:
hights = []
for l in PredsAll:
hights.append(l[8,1] - l[19,1])
ins = hights.index(max(hights))
# print('\t################ Warning: Detected too many face, only handle the largest one...')
# continue
preds = PredsAll[ins]
AddLength = np.sqrt(np.sum(np.power(preds[27][0:2]-preds[33][0:2],2)))
SaveName = ImgName+'.txt'
np.savetxt(os.path.join(SaveLandmarkPath,SaveName),preds[:,0:2],fmt='%.3f')
#######################################################################
####################### Step 3: Face Restoration ######################
#######################################################################
print('\n###############################################################################')
print('####################### Step 3: Face Restoration ##############################')
print('###############################################################################\n')
SaveRestorePath = os.path.join(ResultsDir,'Step3_RestoreCropFace')# Only Face Results
if not os.path.exists(SaveRestorePath):
os.makedirs(SaveRestorePath)
model = create_model(opt)
model.setup(opt)
# test
ImgPaths = make_dataset(SaveCropPath)
total = 0
for i, ImgPath in enumerate(ImgPaths):
ImgName = os.path.split(ImgPath)[-1]
print('Restoring {}'.format(ImgName))
torch.cuda.empty_cache()
data = obtain_inputs(SaveCropPath, SaveLandmarkPath, ImgName)
if data == 0:
print('\t################ Error in landmark file, continue...')
continue #
total = total + 1
model.set_input(data)
try:
model.test()
visuals = model.get_current_visuals()
save_crop(visuals,os.path.join(SaveRestorePath,ImgName))
except Exception as e:
print('\t################ Error in enhancing this image: {}'.format(str(e)))
print('\t################ continue...')
continue
#######################################################################
############ Step 4: Paste the Results to the Input Image #############
#######################################################################
print('\n###############################################################################')
print('############### Step 4: Paste the Restored Face to the Input Image ############')
print('###############################################################################\n')
SaveFianlPath = os.path.join(ResultsDir,'Step4_FinalResults')
if not os.path.exists(SaveFianlPath):
os.makedirs(SaveFianlPath)
ImgPaths = make_dataset(SaveRestorePath)
for i,ImgPath in enumerate(ImgPaths):
ImgName = os.path.split(ImgPath)[-1]
print('Final Restoring {}'.format(ImgName))
WholeInputPath = os.path.join(TestImgPath,ImgName)
FaceResultPath = os.path.join(SaveRestorePath, ImgName)
ParamPath = os.path.join(SaveParamPath, ImgName+'.npy')
SaveWholePath = os.path.join(SaveFianlPath, ImgName)
reverse_align(WholeInputPath, FaceResultPath, ParamPath, SaveWholePath, UpScaleWhole)
print('\nAll results are saved in {} \n'.format(ResultsDir))
|