Spaces:
Sleeping
Sleeping
File size: 35,798 Bytes
95daf43 1621c4e abcb2f1 fee9667 1621c4e 95daf43 1621c4e 95daf43 fee9667 1621c4e fee9667 95daf43 1621c4e fee9667 1621c4e fee9667 1621c4e 9acf49e 1621c4e fee9667 1621c4e fee9667 1621c4e fee9667 1621c4e fee9667 1621c4e fee9667 1621c4e fee9667 1621c4e fee9667 1621c4e fee9667 1621c4e fee9667 1621c4e fee9667 1621c4e fee9667 95daf43 f2eb705 95daf43 288b637 95daf43 f2eb705 1621c4e 95daf43 fee9667 95daf43 fee9667 95daf43 1621c4e 95daf43 fee9667 1621c4e 95daf43 1621c4e 95daf43 1621c4e 95daf43 1621c4e 95daf43 fee9667 1621c4e 95daf43 f2eb705 288b637 95daf43 f2eb705 95daf43 1621c4e 95daf43 1621c4e 288b637 1621c4e 95daf43 1621c4e fee9667 1621c4e 95daf43 f2eb705 1621c4e 288b637 f2eb705 1621c4e 288b637 f2eb705 1621c4e f2eb705 1621c4e f2eb705 1621c4e 288b637 1621c4e 288b637 1621c4e 288b637 f2eb705 1621c4e 288b637 9acf49e 288b637 1621c4e f2eb705 95daf43 1621c4e f2eb705 1621c4e f2eb705 1621c4e f2eb705 1621c4e f2eb705 1621c4e f2eb705 1621c4e f2eb705 1621c4e f2eb705 1621c4e f2eb705 1621c4e f2eb705 1621c4e f2eb705 1621c4e f2eb705 1621c4e f2eb705 288b637 1621c4e f2eb705 1621c4e f2eb705 1621c4e f2eb705 1621c4e f2eb705 288b637 1621c4e 95daf43 1621c4e 95daf43 1621c4e fee9667 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 |
import gradio as gr
import pandas as pd
import requests
import json
from transformers import pipeline, AutoTokenizer, AutoModel
import torch
from sentence_transformers import SentenceTransformer, CrossEncoder
import time
from typing import List, Dict, Tuple
import re
import numpy as np
# ============================================================================
# ADVANCED NLP MODELS INITIALIZATION
# ============================================================================
print("Loading advanced models...")
# Initialize advanced models
try:
# Cross-encoder for accurate semantic similarity
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2', max_length=512)
# Zero-shot classifier for criteria matching
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
# Medical sentence transformer
sentence_model = SentenceTransformer('pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb')
# PubMedBERT for medical text understanding
pubmed_tokenizer = AutoTokenizer.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract")
pubmed_model = AutoModel.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract")
print("Advanced models loaded successfully!")
USE_ADVANCED_MODELS = True
except Exception as e:
print(f"Warning: Could not load advanced models, falling back to basic models. Error: {e}")
# Fallback to basic models
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
similarity_model = pipeline("feature-extraction", model="sentence-transformers/all-MiniLM-L6-v2")
USE_ADVANCED_MODELS = False
print("Basic models loaded successfully!")
# Medical terminology expansions
MEDICAL_SYNONYMS = {
'rct': ['randomized controlled trial', 'randomised controlled trial', 'randomized clinical trial'],
'pain': ['pain', 'nociception', 'analgesia', 'hyperalgesia', 'allodynia', 'neuropathic pain',
'chronic pain', 'acute pain', 'postoperative pain', 'pain management'],
'surgery': ['surgery', 'surgical', 'operation', 'operative', 'postoperative', 'perioperative',
'preoperative', 'surgical procedure', 'surgical intervention'],
'study design': ['study design', 'trial design', 'research design', 'methodology',
'randomized', 'controlled', 'cohort', 'case-control', 'cross-sectional'],
}
# ============================================================================
# ADVANCED NLP FUNCTIONS
# ============================================================================
def expand_medical_terms(term: str) -> List[str]:
"""Expand medical terms with synonyms"""
term_lower = term.lower()
expanded = [term]
for key, synonyms in MEDICAL_SYNONYMS.items():
if key in term_lower or any(syn in term_lower for syn in synonyms):
expanded.extend(synonyms[:3]) # Limit expansion
return list(set(expanded))
def cross_encoder_score(text: str, criteria: str) -> float:
"""Calculate cross-encoder similarity score"""
if not USE_ADVANCED_MODELS:
return 0.5 # Default score if not available
try:
score = cross_encoder.predict([[text, criteria]])
return float(1 / (1 + np.exp(-score[0])))
except:
return 0.5
def get_pubmed_embedding(text: str) -> np.ndarray:
"""Get PubMedBERT embedding for medical text"""
if not USE_ADVANCED_MODELS:
return np.zeros(768)
try:
inputs = pubmed_tokenizer(text, return_tensors="pt", truncation=True, max_length=512, padding=True)
with torch.no_grad():
outputs = pubmed_model(**inputs)
embedding = outputs.last_hidden_state[:, 0, :].numpy()
return embedding.squeeze()
except:
return np.zeros(768)
def zero_shot_classify(text: str, labels: List[str], hypothesis_template: str = "This study is about {}") -> Dict:
"""Perform zero-shot classification"""
if not labels:
return {}
try:
result = classifier(text, candidate_labels=labels[:10], hypothesis_template=hypothesis_template, multi_label=True)
scores = {}
for label, score in zip(result['labels'], result['scores']):
scores[label] = score
return scores
except:
return {}
# ============================================================================
# ENHANCED CRITERIA PARSING
# ============================================================================
def parse_criteria(criteria_text: str, stage: str = "stage1") -> Dict:
"""Parse criteria with medical term expansion"""
criteria = {
'population': [], 'intervention': [], 'comparator': [], 'outcomes': [],
'study_design': [], 'include_general': [], 'exclude_general': []
}
lines = criteria_text.lower().split('\n')
current_section = None
for line in lines:
line = line.strip()
if not line:
continue
# Detect section headers
if any(keyword in line for keyword in ['population:', 'participants:', 'subjects:']):
current_section = 'population'
elif any(keyword in line for keyword in ['intervention:', 'exposure:', 'treatment:']):
current_section = 'intervention'
elif any(keyword in line for keyword in ['comparator:', 'control:', 'comparison:']):
current_section = 'comparator'
elif any(keyword in line for keyword in ['outcomes:', 'endpoint:', 'results:']):
current_section = 'outcomes'
elif any(keyword in line for keyword in ['study design:', 'design:', 'study type:']):
current_section = 'study_design'
elif 'include' in line and ':' in line:
current_section = 'include_general'
elif 'exclude' in line and ':' in line:
current_section = 'exclude_general'
elif line.startswith('-') and current_section:
term = line[1:].strip()
if term and len(term) > 2:
# Expand medical terms if advanced models are available
if USE_ADVANCED_MODELS:
expanded = expand_medical_terms(term)
criteria[current_section].extend(expanded)
else:
criteria[current_section].append(term)
elif current_section and not any(keyword in line for keyword in ['include', 'exclude', 'population', 'intervention', 'comparator', 'outcomes', 'study']):
terms = [t.strip() for t in line.split(',') if t.strip() and len(t.strip()) > 2]
if USE_ADVANCED_MODELS:
for term in terms:
expanded = expand_medical_terms(term)
criteria[current_section].extend(expanded)
else:
criteria[current_section].extend(terms)
# Remove duplicates
for key in criteria:
criteria[key] = list(set(criteria[key]))
return criteria
# ============================================================================
# ENHANCED STAGE 1 CLASSIFICATION
# ============================================================================
def semantic_similarity_score(study_text: str, criteria_terms: List[str]) -> Tuple[float, str]:
"""Calculate semantic similarity with advanced models if available"""
if not criteria_terms:
return 0.0, ""
best_score, best_match = 0.0, ""
if USE_ADVANCED_MODELS:
# Use cross-encoder for more accurate matching
for term in criteria_terms[:5]: # Limit to avoid slowdown
score = cross_encoder_score(study_text, term)
if score > best_score:
best_score, best_match = score, term
else:
# Fallback to basic embedding similarity
study_embedding = get_text_embedding(study_text)
for term in criteria_terms:
term_embedding = get_text_embedding(term)
similarity = cosine_similarity(study_embedding, term_embedding)
if similarity > best_score:
best_score, best_match = similarity, term
return best_score, best_match
def cosine_similarity(a, b):
"""Simple cosine similarity calculation"""
dot_product = np.dot(a, b)
norm_a = np.linalg.norm(a)
norm_b = np.linalg.norm(b)
return dot_product / (norm_a * norm_b) if norm_a > 0 and norm_b > 0 else 0
def get_text_embedding(text):
"""Get text embedding using the similarity model"""
if USE_ADVANCED_MODELS:
try:
embedding = sentence_model.encode(text)
return embedding
except:
return np.zeros(384)
else:
try:
if 'similarity_model' in globals():
embeddings = similarity_model(text)
return np.mean(embeddings[0], axis=0)
else:
return np.zeros(384)
except:
return np.zeros(384)
def stage1_classification(title: str, abstract: str, criteria_text: str) -> Dict:
"""Enhanced Stage 1 classification with advanced NLP when available"""
study_text = f"{title} {abstract}".lower()
if len(study_text.strip()) < 20:
return {'decision': 'UNCLEAR', 'confidence': 20, 'reasoning': 'Insufficient text', 'stage': 1}
criteria = parse_criteria(criteria_text, "stage1")
# Use zero-shot classification if available with advanced models
if USE_ADVANCED_MODELS and criteria['include_general']:
zs_scores = zero_shot_classify(
study_text,
criteria['include_general'][:5],
"This study is relevant to {}"
)
if zs_scores:
max_zs_score = max(zs_scores.values())
if max_zs_score > 0.7:
return {
'decision': 'INCLUDE',
'confidence': min(int(max_zs_score * 100), 85),
'reasoning': f"Stage 1 INCLUDE: High relevance to inclusion criteria ({max_zs_score:.2f})",
'stage': 1
}
# Calculate PICOS scores with appropriate thresholds
pop_score, pop_match = semantic_similarity_score(study_text, criteria['population'])
int_score, int_match = semantic_similarity_score(study_text, criteria['intervention'])
out_score, out_match = semantic_similarity_score(study_text, criteria['outcomes'])
design_score, design_match = semantic_similarity_score(study_text, criteria['study_design'])
inc_score, inc_match = semantic_similarity_score(study_text, criteria['include_general'])
exc_score, exc_match = semantic_similarity_score(study_text, criteria['exclude_general'])
# Adjust thresholds based on model availability
threshold = 0.4 if USE_ADVANCED_MODELS else 0.25
reasoning_parts = []
if pop_score > threshold: reasoning_parts.append(f"Population: '{pop_match}' ({pop_score:.2f})")
if int_score > threshold: reasoning_parts.append(f"Intervention: '{int_match}' ({int_score:.2f})")
if out_score > threshold: reasoning_parts.append(f"Outcome: '{out_match}' ({out_score:.2f})")
if design_score > threshold: reasoning_parts.append(f"Design: '{design_match}' ({design_score:.2f})")
if inc_score > threshold: reasoning_parts.append(f"Include: '{inc_match}' ({inc_score:.2f})")
if exc_score > threshold: reasoning_parts.append(f"Exclude: '{exc_match}' ({exc_score:.2f})")
# Decision Logic
exc_threshold = 0.5 if USE_ADVANCED_MODELS else 0.35
if exc_score > exc_threshold:
decision, confidence = 'EXCLUDE', min(int(exc_score * 100), 90)
reasoning = f"Stage 1 EXCLUDE: {'; '.join(reasoning_parts)}"
elif sum([pop_score > threshold, int_score > threshold, out_score > threshold]) >= 2 and USE_ADVANCED_MODELS:
avg_score = np.mean([s for s in [pop_score, int_score, out_score, design_score, inc_score] if s > threshold])
decision, confidence = 'INCLUDE', min(int(avg_score * 85), 85)
reasoning = f"Stage 1 INCLUDE (Advanced): {'; '.join(reasoning_parts)}"
elif sum([pop_score > 0.25, int_score > 0.25, out_score > 0.25]) >= 1:
avg_score = np.mean([s for s in [pop_score, int_score, out_score, design_score, inc_score] if s > 0.25])
decision, confidence = 'INCLUDE', min(int(avg_score * 75), 80)
reasoning = f"Stage 1 INCLUDE: {'; '.join(reasoning_parts)}"
else:
decision, confidence = 'UNCLEAR', 40
reasoning = f"Stage 1 UNCLEAR: {'; '.join(reasoning_parts) if reasoning_parts else 'No clear matches'}"
return {'decision': decision, 'confidence': confidence, 'reasoning': reasoning, 'stage': 1}
# ============================================================================
# STAGE 2 CLASSIFICATION (keeping original)
# ============================================================================
def stage2_classification(title: str, abstract: str, full_text: str, criteria_text: str,
data_extraction_fields: Dict = None) -> Dict:
"""Stage 2: Detailed full-text screening with data extraction"""
# Combine all available text
study_text = f"{title} {abstract} {full_text}".lower()
if len(study_text.strip()) < 50:
return {'decision': 'UNCLEAR', 'confidence': 25, 'reasoning': 'Insufficient full text', 'stage': 2}
criteria = parse_criteria(criteria_text, "stage2")
# More stringent scoring for Stage 2
pop_score, pop_match = semantic_similarity_score(study_text, criteria['population'])
int_score, int_match = semantic_similarity_score(study_text, criteria['intervention'])
comp_score, comp_match = semantic_similarity_score(study_text, criteria['comparator'])
out_score, out_match = semantic_similarity_score(study_text, criteria['outcomes'])
design_score, design_match = semantic_similarity_score(study_text, criteria['study_design'])
exc_score, exc_match = semantic_similarity_score(study_text, criteria['exclude_general'])
# Data extraction scoring
extraction_scores = {}
if data_extraction_fields:
for field, terms in data_extraction_fields.items():
if terms:
field_score, field_match = semantic_similarity_score(study_text, terms)
extraction_scores[field] = {'score': field_score, 'match': field_match}
reasoning_parts = []
if pop_score > 0.3: reasoning_parts.append(f"Population: '{pop_match}' ({pop_score:.2f})")
if int_score > 0.3: reasoning_parts.append(f"Intervention: '{int_match}' ({int_score:.2f})")
if comp_score > 0.3: reasoning_parts.append(f"Comparator: '{comp_match}' ({comp_score:.2f})")
if out_score > 0.3: reasoning_parts.append(f"Outcome: '{out_match}' ({out_score:.2f})")
if design_score > 0.3: reasoning_parts.append(f"Design: '{design_match}' ({design_score:.2f})")
if exc_score > 0.3: reasoning_parts.append(f"Exclusion: '{exc_match}' ({exc_score:.2f})")
# Stage 2 Decision Logic (High Specificity)
if exc_score > 0.4:
decision, confidence = 'EXCLUDE', min(int(exc_score * 100), 95)
reasoning = f"Stage 2 EXCLUDE: {'; '.join(reasoning_parts)}"
elif sum([pop_score > 0.4, int_score > 0.4, out_score > 0.4, design_score > 0.4]) >= 3:
avg_score = np.mean([pop_score, int_score, comp_score, out_score, design_score])
decision, confidence = 'INCLUDE', min(int(avg_score * 85), 92)
reasoning = f"Stage 2 INCLUDE: {'; '.join(reasoning_parts)}"
elif max(pop_score, int_score, out_score) > 0.5:
decision, confidence = 'INCLUDE', min(int(max(pop_score, int_score, out_score) * 80), 88)
reasoning = f"Stage 2 INCLUDE: {'; '.join(reasoning_parts)}"
else:
decision, confidence = 'EXCLUDE', 60
reasoning = f"Stage 2 EXCLUDE: Insufficient criteria match. {'; '.join(reasoning_parts)}"
result = {
'decision': decision,
'confidence': confidence,
'reasoning': reasoning,
'stage': 2,
'extraction_data': extraction_scores
}
return result
# ============================================================================
# PROCESSING FUNCTIONS (keeping original structure)
# ============================================================================
def process_stage1(file, title_col, abstract_col, criteria, sample_size):
"""Process Stage 1 screening with enhanced NLP"""
try:
df = pd.read_csv(file.name)
if sample_size < len(df):
df = df.head(sample_size)
results = []
for idx, row in df.iterrows():
title = str(row[title_col]) if pd.notna(row[title_col]) else ""
abstract = str(row[abstract_col]) if pd.notna(row[abstract_col]) else ""
if not title and not abstract:
continue
classification = stage1_classification(title, abstract, criteria)
result = {
'Study_ID': idx + 1,
'Title': title[:100] + "..." if len(title) > 100 else title,
'Stage1_Decision': classification['decision'],
'Stage1_Confidence': f"{classification['confidence']}%",
'Stage1_Reasoning': classification['reasoning'],
'Ready_for_Stage2': 'Yes' if classification['decision'] == 'INCLUDE' else 'No',
'Full_Title': title,
'Full_Abstract': abstract
}
results.append(result)
results_df = pd.DataFrame(results)
# Summary for Stage 1
total = len(results_df)
included = len(results_df[results_df['Stage1_Decision'] == 'INCLUDE'])
excluded = len(results_df[results_df['Stage1_Decision'] == 'EXCLUDE'])
unclear = len(results_df[results_df['Stage1_Decision'] == 'UNCLEAR'])
model_info = "**Using Advanced Medical NLP Models**" if USE_ADVANCED_MODELS else "**Using Basic NLP Models**"
summary = f"""
## π Stage 1 (Title/Abstract) Results
{model_info}
**Screening Complete:**
- **Total Studies:** {total}
- **Include for Stage 2:** {included} ({included/total*100:.1f}%)
- **Exclude:** {excluded} ({excluded/total*100:.1f}%)
- **Needs Manual Review:** {unclear} ({unclear/total*100:.1f}%)
**Next Steps:**
1. Review {unclear} studies marked as UNCLEAR
2. Proceed to Stage 2 with {included} included studies
3. Obtain full texts for Stage 2 screening
"""
return summary, results_df, results_df.to_csv(index=False)
except Exception as e:
return f"Error: {str(e)}", None, ""
def process_stage2(file, title_col, abstract_col, fulltext_col, criteria, extraction_fields, sample_size):
"""Process Stage 2 screening with data extraction"""
try:
df = pd.read_csv(file.name)
# Filter to only Stage 1 included studies if column exists
if 'Stage1_Decision' in df.columns:
df = df[df['Stage1_Decision'] == 'INCLUDE']
if sample_size < len(df):
df = df.head(sample_size)
# Parse extraction fields
extraction_dict = {}
if extraction_fields:
for line in extraction_fields.split('\n'):
if ':' in line:
field, terms = line.split(':', 1)
extraction_dict[field.strip()] = [t.strip() for t in terms.split(',') if t.strip()]
results = []
for idx, row in df.iterrows():
title = str(row[title_col]) if pd.notna(row[title_col]) else ""
abstract = str(row[abstract_col]) if pd.notna(row[abstract_col]) else ""
full_text = str(row[fulltext_col]) if fulltext_col and fulltext_col in df.columns and pd.notna(row[fulltext_col]) else ""
if not title and not abstract:
continue
classification = stage2_classification(title, abstract, full_text, criteria, extraction_dict)
result = {
'Study_ID': idx + 1,
'Title': title[:100] + "..." if len(title) > 100 else title,
'Stage2_Decision': classification['decision'],
'Stage2_Confidence': f"{classification['confidence']}%",
'Stage2_Reasoning': classification['reasoning'],
'Final_Include': 'Yes' if classification['decision'] == 'INCLUDE' else 'No',
'Extraction_Data': str(classification.get('extraction_data', {})),
'Full_Title': title,
'Full_Abstract': abstract,
'Full_Text': full_text
}
results.append(result)
results_df = pd.DataFrame(results)
# Summary for Stage 2
total = len(results_df)
final_included = len(results_df[results_df['Stage2_Decision'] == 'INCLUDE'])
final_excluded = len(results_df[results_df['Stage2_Decision'] == 'EXCLUDE'])
summary = f"""
## π Stage 2 (Full-Text) Results
**Detailed Screening Complete:**
- **Studies Reviewed:** {total}
- **Final INCLUDE:** {final_included} ({final_included/total*100:.1f}%)
- **Final EXCLUDE:** {final_excluded} ({final_excluded/total*100:.1f}%)
**Ready for Next Steps:**
- **Data Extraction:** {final_included} studies
- **Quality Assessment:** {final_included} studies
- **Evidence Synthesis:** Ready to proceed
**Recommended Actions:**
1. Export {final_included} included studies for detailed data extraction
2. Conduct quality assessment (ROB2, ROBINS-I, etc.)
3. Begin evidence synthesis and meta-analysis planning
"""
return summary, results_df, results_df.to_csv(index=False)
except Exception as e:
return f"Error: {str(e)}", None, ""
# ============================================================================
# ORIGINAL INTERFACE (PRESERVED)
# ============================================================================
def create_interface():
with gr.Blocks(title="π¬ 2-Stage Systematic Review AI Assistant", theme=gr.themes.Soft()) as interface:
gr.Markdown("""
# π¬ 2-Stage Systematic Review AI Assistant
**Complete workflow for evidence-based systematic reviews**
This tool supports the full 2-stage systematic review process:
- **Stage 1:** Title/Abstract screening (high sensitivity)
- **Stage 2:** Full-text screening with data extraction (high specificity)
""")
with gr.Tabs():
# STAGE 1 TAB
with gr.TabItem("π Stage 1: Title/Abstract Screening"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π Upload Study Data")
stage1_file = gr.File(
label="Upload Studies (CSV) - Search results from databases",
file_types=[".csv"],
type="filepath"
)
with gr.Row():
stage1_title_col = gr.Dropdown(label="Title Column", choices=[], interactive=True)
stage1_abstract_col = gr.Dropdown(label="Abstract Column", choices=[], interactive=True)
stage1_sample = gr.Slider(label="Studies to Process", minimum=5, maximum=500, value=100, step=5)
with gr.Column(scale=1):
gr.Markdown("### π― Stage 1 Criteria (Broad/Sensitive)")
stage1_criteria = gr.Textbox(
label="Inclusion/Exclusion Criteria for Stage 1",
value="""POPULATION:
- Adult participants
- Human studies
INTERVENTION:
- [Your intervention/exposure of interest]
OUTCOMES:
- [Primary outcomes of interest]
STUDY DESIGN:
- Randomized controlled trials
- Cohort studies
- Case-control studies
EXCLUDE:
- Animal studies
- Case reports
- Reviews (unless relevant)""",
lines=15
)
stage1_process_btn = gr.Button("π Start Stage 1 Screening", variant="primary")
stage1_results = gr.Markdown()
stage1_table = gr.Dataframe(label="Stage 1 Results")
stage1_download_data = gr.Textbox(visible=False)
stage1_download_btn = gr.DownloadButton(label="πΎ Download Stage 1 Results", visible=False)
# STAGE 2 TAB
with gr.TabItem("π Stage 2: Full-Text Screening"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π Upload Stage 1 Results or Full-Text Data")
stage2_file = gr.File(
label="Upload Stage 1 Results or Studies with Full Text",
file_types=[".csv"],
type="filepath"
)
with gr.Row():
stage2_title_col = gr.Dropdown(label="Title Column", choices=[], interactive=True)
stage2_abstract_col = gr.Dropdown(label="Abstract Column", choices=[], interactive=True)
stage2_fulltext_col = gr.Dropdown(label="Full Text Column", choices=[], interactive=True)
stage2_sample = gr.Slider(label="Studies to Process", minimum=5, maximum=200, value=50, step=5)
with gr.Column(scale=1):
gr.Markdown("### π― Stage 2 Criteria (Strict/Specific)")
stage2_criteria = gr.Textbox(
label="Detailed Inclusion/Exclusion Criteria for Stage 2",
value="""POPULATION:
- [Specific population criteria]
- [Age ranges, conditions, etc.]
INTERVENTION:
- [Detailed intervention specifications]
- [Dosage, duration, delivery method]
COMPARATOR:
- [Control group specifications]
- [Placebo, standard care, etc.]
OUTCOMES:
- [Primary endpoint definitions]
- [Secondary outcomes]
- [Measurement methods]
STUDY DESIGN:
- [Minimum study quality requirements]
- [Follow-up duration requirements]
EXCLUDE:
- [Specific exclusion criteria]
- [Study quality thresholds]""",
lines=15
)
extraction_fields = gr.Textbox(
label="Data Extraction Fields (Optional)",
value="""Sample Size: participants, subjects, patients, n=
Intervention Duration: weeks, months, days, duration
Primary Outcome: endpoint, primary outcome, main outcome
Statistical Method: analysis, statistical, regression, model
Risk of Bias: randomization, blinding, allocation""",
lines=8
)
stage2_process_btn = gr.Button("π Start Stage 2 Screening", variant="primary")
stage2_results = gr.Markdown()
stage2_table = gr.Dataframe(label="Stage 2 Results with Data Extraction")
stage2_download_data = gr.Textbox(visible=False)
stage2_download_btn = gr.DownloadButton(label="πΎ Download Final Results", visible=False)
# WORKFLOW GUIDANCE TAB
with gr.TabItem("π Systematic Review Workflow"):
gr.Markdown("""
## π Complete 2-Stage Systematic Review Process
### **Stage 1: Title/Abstract Screening**
**Objective:** High sensitivity screening to identify potentially relevant studies
**Process:**
1. Upload search results from multiple databases (PubMed, Embase, etc.)
2. Define broad inclusion/exclusion criteria
3. AI screens titles/abstracts with high sensitivity
4. Manually review "UNCLEAR" classifications
5. Export studies marked for inclusion to Stage 2
**Criteria Guidelines:**
- Use broad terms to capture all potentially relevant studies
- Focus on key PICOS elements (Population, Intervention, Outcomes)
- Err on the side of inclusion when uncertain
### **Stage 2: Full-Text Screening**
**Objective:** High specificity screening with detailed data extraction
**Process:**
1. Upload Stage 1 results or add full-text content
2. Define strict, specific inclusion/exclusion criteria
3. AI performs detailed full-text analysis
4. Extract key data points for synthesis
5. Export final included studies for meta-analysis
**Criteria Guidelines:**
- Use specific, measurable criteria
- Include detailed PICOS specifications
- Define minimum quality thresholds
- Specify exact outcome measurements needed
### **Quality Assurance Recommendations:**
**For Stage 1:**
- Manual review of 10-20% of AI decisions
- Inter-rater reliability testing with subset
- Calibration exercises among reviewers
**For Stage 2:**
- Manual validation of all AI INCLUDE decisions
- Detailed reason documentation for exclusions
- Data extraction verification by second reviewer
### **After 2-Stage Screening:**
1. **Data Extraction:** Extract detailed study characteristics
2. **Quality Assessment:** Apply ROB2, ROBINS-I, or other tools
3. **Evidence Synthesis:** Qualitative synthesis and meta-analysis
4. **GRADE Assessment:** Evaluate certainty of evidence
5. **Reporting:** Follow PRISMA guidelines
### **Best Practices:**
- **Document everything:** Keep detailed logs of decisions and criteria
- **Validate AI decisions:** Use AI as assistance, not replacement
- **Follow guidelines:** Adhere to Cochrane and PRISMA standards
- **Test criteria:** Pilot with known studies before full screening
- **Multiple reviewers:** Have disagreements resolved by third reviewer
### **When to Use Each Stage:**
**Use Stage 1 when:**
- Starting with large search results (>1000 studies)
- Need to quickly filter irrelevant studies
- Working with title/abstract data only
**Use Stage 2 when:**
- Have full-text access to studies
- Need detailed inclusion/exclusion assessment
- Ready for data extraction
- Preparing for meta-analysis
### **Advanced NLP Features:**
This tool now includes advanced medical NLP models when available:
- **PubMedBERT** for medical text understanding
- **Cross-encoders** for accurate semantic matching
- **Zero-shot classification** for flexible criteria
- **Medical term expansion** for comprehensive matching
The system automatically detects and uses advanced models when available,
falling back to basic models if needed.
""")
# Event handlers for file uploads and column detection
def update_stage1_columns(file):
if file is None:
return gr.Dropdown(choices=[]), gr.Dropdown(choices=[])
try:
df = pd.read_csv(file.name)
columns = df.columns.tolist()
title_col = next((col for col in columns if 'title' in col.lower()), columns[0] if columns else None)
abstract_col = next((col for col in columns if 'abstract' in col.lower()), columns[1] if len(columns) > 1 else None)
return gr.Dropdown(choices=columns, value=title_col), gr.Dropdown(choices=columns, value=abstract_col)
except:
return gr.Dropdown(choices=[]), gr.Dropdown(choices=[])
def update_stage2_columns(file):
if file is None:
return gr.Dropdown(choices=[]), gr.Dropdown(choices=[]), gr.Dropdown(choices=[])
try:
df = pd.read_csv(file.name)
columns = df.columns.tolist()
title_col = next((col for col in columns if 'title' in col.lower()), columns[0] if columns else None)
abstract_col = next((col for col in columns if 'abstract' in col.lower()), columns[1] if len(columns) > 1 else None)
fulltext_col = next((col for col in columns if any(term in col.lower() for term in ['full_text', 'fulltext', 'text', 'content'])), None)
return (gr.Dropdown(choices=columns, value=title_col),
gr.Dropdown(choices=columns, value=abstract_col),
gr.Dropdown(choices=columns, value=fulltext_col))
except:
return gr.Dropdown(choices=[]), gr.Dropdown(choices=[]), gr.Dropdown(choices=[])
# Event bindings
stage1_file.change(fn=update_stage1_columns, inputs=[stage1_file], outputs=[stage1_title_col, stage1_abstract_col])
stage2_file.change(fn=update_stage2_columns, inputs=[stage2_file], outputs=[stage2_title_col, stage2_abstract_col, stage2_fulltext_col])
def process_stage1_with_download(*args):
summary, table, csv_data = process_stage1(*args)
return summary, table, csv_data, gr.DownloadButton(visible=bool(csv_data))
def process_stage2_with_download(*args):
summary, table, csv_data = process_stage2(*args)
return summary, table, csv_data, gr.DownloadButton(visible=bool(csv_data))
stage1_process_btn.click(
fn=process_stage1_with_download,
inputs=[stage1_file, stage1_title_col, stage1_abstract_col, stage1_criteria, stage1_sample],
outputs=[stage1_results, stage1_table, stage1_download_data, stage1_download_btn]
)
stage2_process_btn.click(
fn=process_stage2_with_download,
inputs=[stage2_file, stage2_title_col, stage2_abstract_col, stage2_fulltext_col, stage2_criteria, extraction_fields, stage2_sample],
outputs=[stage2_results, stage2_table, stage2_download_data, stage2_download_btn]
)
stage1_download_btn.click(lambda data: data, inputs=[stage1_download_data], outputs=[gr.File()])
stage2_download_btn.click(lambda data: data, inputs=[stage2_download_data], outputs=[gr.File()])
return interface
if __name__ == "__main__":
interface = create_interface()
interface.launch() |