Spaces:
Runtime error
Runtime error
| from pydrive.auth import GoogleAuth | |
| from pydrive.drive import GoogleDrive | |
| # Authenticate and create the PyDrive client. | |
| gauth = GoogleAuth() | |
| gauth.LocalWebserverAuth() | |
| drive = GoogleDrive(gauth) | |
| # Replace 'file_id' with the actual ID of your file in Google Drive. | |
| file_id = '1lDfR_B3fYM_rmC8H_HDtRdxJKveYWmOp' | |
| # Create a GoogleDriveFile instance with the file ID. | |
| file_obj = drive.CreateFile({'id': file_id}) | |
| # Download the file content. | |
| downloaded_file_path = 'downloaded_model.pth' | |
| file_obj.GetContentFile(downloaded_file_path) | |
| print("ok") | |
| # import gradio as gr | |
| # from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
| # import torch | |
| # from sentence_transformers import SentenceTransformer, models | |
| # param_max_length=256 | |
| # # Define a function that takes a text input and returns the result | |
| # def analyze_text(input): | |
| # # Your processing or model inference code here | |
| # result = predict_similarity(input) | |
| # return result | |
| # param_model_name="CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth" | |
| # tokenizer = AutoTokenizer.from_pretrained(param_model_name) | |
| # class BertForSTS(torch.nn.Module): | |
| # def __init__(self): | |
| # super(BertForSTS, self).__init__() | |
| # #self.bert = models.Transformer('bert-base-uncased', max_seq_length=128) | |
| # #self.bert = AutoModelForSequenceClassification.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth") | |
| # self.bert = models.Transformer(param_model_name, max_seq_length=param_max_length) | |
| # dimension= self.bert.get_word_embedding_dimension() | |
| # #print(dimension) | |
| # self.pooling_layer = models.Pooling(dimension) | |
| # self.dropout = torch.nn.Dropout(0.1) | |
| # # relu activation function | |
| # self.relu = torch.nn.ReLU() | |
| # # dense layer 1 | |
| # self.fc1 = torch.nn.Linear(dimension,512) | |
| # # dense layer 2 (Output layer) | |
| # self.fc2 = torch.nn.Linear(512,512) | |
| # #self.pooling_layer = models.Pooling(self.bert.config.hidden_size) | |
| # self.sts_bert = SentenceTransformer(modules=[self.bert,self.pooling_layer, self.fc1]) | |
| # #self.sts_bert = SentenceTransformer(modules=[self.bert,self.pooling_layer, self.fc1, self.relu, self.dropout,self.fc2]) | |
| # def forward(self, input_data): | |
| # #print(input_data) | |
| # x=self.bert(input_data) | |
| # x=self.pooling_layer(x) | |
| # x=self.fc1(x['sentence_embedding']) | |
| # x = self.relu(x) | |
| # x = self.dropout(x) | |
| # #x = self.fc2(x) | |
| # return x | |
| # model_load_path = "model.pt" | |
| # model = BertForSTS() | |
| # model.load_state_dict(torch.load(model_load_path)) | |
| # model.to(device) | |
| # def predict_similarity(sentence_pair): | |
| # test_input = tokenizer(sentence_pair, padding='max_length', max_length = param_max_length, truncation=True, return_tensors="pt").to(device) | |
| # test_input['input_ids'] = test_input['input_ids'] | |
| # print(test_input['input_ids']) | |
| # test_input['attention_mask'] = test_input['attention_mask'] | |
| # del test_input['token_type_ids'] | |
| # output = model(test_input) | |
| # sim = torch.nn.functional.cosine_similarity(output[0], output[1], dim=0).item()*2-1 | |
| # return sim | |
| # # Create a Gradio interface with a text input zone | |
| # iface = gr.Interface( | |
| # fn=analyze_text, # The function to be called with user input | |
| # inputs=[gr.Textbox(), gr.Textbox()], | |
| # outputs="text" # Display the result as text | |
| # ) | |
| # # # Launch the Gradio interface | |
| # iface.launch() |