Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import pipeline | |
| # --- App title and description --- | |
| st.set_page_config(page_title="Fake Job / Lie Detector", layout="centered") | |
| st.title("π Fake Job / Lie Detector") | |
| st.write( | |
| "Enter a job description below and the AI will predict if it's likely genuine or fake." | |
| ) | |
| # --- Load zero-shot classification model --- | |
| def load_model(): | |
| return pipeline( | |
| "zero-shot-classification", | |
| model="typeform/distilbert-base-uncased-mnli" | |
| ) | |
| classifier = load_model() | |
| # --- Text input --- | |
| job_description = st.text_area("Enter the job description here:") | |
| # --- Button action --- | |
| if st.button("Check Job"): | |
| if not job_description.strip(): | |
| st.warning("β οΈ Please enter a job description first!") | |
| else: | |
| candidate_labels = ["genuine", "fake"] | |
| result = classifier(job_description, candidate_labels) | |
| label = result['labels'][0] | |
| confidence = round(result['scores'][0]*100, 2) | |
| # --- Display results with color --- | |
| if label == "genuine": | |
| st.success(f"β Prediction: {label.upper()} ({confidence}%)") | |
| else: | |
| st.error(f"β Prediction: {label.upper()} ({confidence}%)") | |
| # --- Footer --- | |
| st.markdown("---") | |
| st.markdown("Built with β€οΈ using Hugging Face Transformers and Streamlit.") | |