mirage / swap_pipeline.py
MacBook pro
Load CodeFormer repo modules automatically
d87a575
import os
import io
import time
import logging
import sys
from typing import Optional, Dict, Any, List
import numpy as np
import cv2
from PIL import Image
try:
# Defer heavy imports; may fail if onnxruntime/torch missing
import insightface # type: ignore
from insightface.app import FaceAnalysis # type: ignore
except Exception:
insightface = None # type: ignore
FaceAnalysis = None # type: ignore
logger = logging.getLogger(__name__)
INSWAPPER_ONNX_PATH = os.path.join('models', 'inswapper', 'inswapper_128_fp16.onnx')
ALT_INSWAPPER_PATH = os.path.join('models', 'inswapper', 'inswapper_128.onnx')
CODEFORMER_PATH = os.path.join('models', 'codeformer', 'codeformer.pth')
class FaceSwapPipeline:
"""Direct face swap + optional enhancement pipeline.
Lifecycle:
1. initialize() -> loads detector/recognizer (buffalo_l) and inswapper onnx
2. set_source_image(image_bytes|np.array) -> extracts source identity face object
3. process_frame(frame) -> swap all or top-N faces using source face
4. (optional) CodeFormer enhancement (always attempted if model present)
"""
def __init__(self):
self.initialized = False
self.source_face = None
self.source_img_meta = {}
# Legacy compatibility flags expected by old WebRTC data channel handlers
# 'loaded' previously indicated full reenactment stack ready; here it maps to self.initialized
self.loaded = False
# Single enhancer path: CodeFormer (optional)
self.max_faces = int(os.getenv('MIRAGE_MAX_FACES', '1'))
# CodeFormer config / controls
self.codeformer_enabled = os.getenv('MIRAGE_CODEFORMER_ENABLED', '1').lower() in ('1','true','yes','on')
self.codeformer_frame_stride = int(os.getenv('MIRAGE_CODEFORMER_FRAME_STRIDE', '1') or '1')
if self.codeformer_frame_stride < 1:
self.codeformer_frame_stride = 1
self.codeformer_face_only = os.getenv('MIRAGE_CODEFORMER_FACE_ONLY', '0').lower() in ('1','true','yes','on')
self.codeformer_face_margin = float(os.getenv('MIRAGE_CODEFORMER_MARGIN', '0.15'))
self._stats = {
'frames': 0,
'last_latency_ms': None,
'avg_latency_ms': None,
'swap_faces_last': 0,
'enhanced_frames': 0,
# New diagnostic counters
'early_no_source': 0,
'early_uninitialized': 0,
'frames_no_faces': 0,
'total_faces_detected': 0,
'total_faces_swapped': 0,
'swap_failures': 0,
'cached_face_reuses': 0,
# Brightness / quality tracking
'frames_low_brightness': 0,
'brightness_last': None,
# Similarity metrics
'last_primary_similarity': None,
}
self._lat_hist: List[float] = []
self._codeformer_lat_hist: List[float] = []
self._frame_index = 0
self._last_faces_cache: List[Any] | None = None
self.app: Optional[FaceAnalysis] = None
self.swapper = None
self.codeformer = None
self.codeformer_fidelity = float(os.getenv('MIRAGE_CODEFORMER_FIDELITY', '0.75'))
self.codeformer_loaded = False
self.codeformer_error: str | None = None
# Debug verbosity for swap decisions
self.swap_debug = os.getenv('MIRAGE_SWAP_DEBUG', '0').lower() in ('1','true','yes','on')
# Brightness compensation configuration
self.enable_brightness_comp = os.getenv('MIRAGE_BRIGHTNESS_COMP', '1').lower() in ('1','true','yes','on')
self.target_brightness = float(os.getenv('MIRAGE_TARGET_BRIGHTNESS', '90')) # mean luminance target (0-255)
self.low_brightness_threshold = float(os.getenv('MIRAGE_LOW_BRIGHTNESS_THRESH', '40'))
# Similarity threshold for logging (cosine similarity typical range [-1,1])
self.similarity_warn_threshold = float(os.getenv('MIRAGE_SIMILARITY_WARN', '0.15'))
# Temporal reuse configuration
self.face_cache_ttl = int(os.getenv('MIRAGE_FACE_CACHE_TTL', '5') or '5') # frames
self._cached_face = None
self._cached_face_age = 0
# Aggressive blend toggle for visibility
self.aggressive_blend = os.getenv('MIRAGE_AGGRESSIVE_BLEND', '0').lower() in ('1','true','yes','on')
# Optional face ROI upscaling for tiny faces
self.face_min_size = int(os.getenv('MIRAGE_FACE_MIN_SIZE', '80') or '80')
self.face_upscale_factor = float(os.getenv('MIRAGE_FACE_UPSCALE', '1.6'))
# Toggle for (currently disabled) naive small-face upscale path that caused artifacts
# Default OFF to prevent black rectangle artifacts observed when re-pasting scaled ROI
self.enable_face_upscale = os.getenv('MIRAGE_FACE_UPSCALE_ENABLE', '0').lower() in ('1','true','yes','on')
# Detector preprocessing (CLAHE) low light
self.det_clahe = os.getenv('MIRAGE_DET_CLAHE', '1').lower() in ('1','true','yes','on')
# End-to-end latency markers
self._last_e2e_ms = None
self._e2e_hist: List[float] = []
# Track model file actually loaded for diagnostics
self.inswapper_model_path: str | None = None
# Resource monitoring
self._gpu_memory_warning_threshold = float(os.getenv('MIRAGE_GPU_MEMORY_WARN_GB', '0.5'))
self._last_memory_check = 0
self._memory_check_interval = 50 # frames between GPU memory checks
# Periodic structured logging interval (in frames) for runtime diagnostics
try:
# Default every 120 frames unless explicitly disabled (roughly ~4s at 30fps)
self.log_interval = int(os.getenv('MIRAGE_SWAP_LOG_INTERVAL', '120') or '120')
except Exception:
self.log_interval = 0 # disabled if invalid
def _log_periodic(self):
"""Emit a concise structured log line every N frames if enabled.
Controlled by MIRAGE_SWAP_LOG_INTERVAL (>0). Keeps log volume bounded while
still providing real-time observability in production (e.g. container logs).
"""
if not self.log_interval or self.log_interval < 1:
return
frames = self._stats['frames']
if frames == 0 or (frames % self.log_interval) != 0:
return
# Batch access to avoid repeated dict lookups
s = self._stats
lat_last = s['last_latency_ms']
lat_avg = s['avg_latency_ms']
brightness = s['brightness_last']
similarity = s['last_primary_similarity']
# Pre-format numbers to avoid repeated formatting in join
parts = [
f"frames={frames}",
f"swap_last={s['swap_faces_last']}",
f"swapped_total={s['total_faces_swapped']}",
f"detected_total={s['total_faces_detected']}",
f"no_face_frames={s['frames_no_faces']}",
f"cache_reuses={s['cached_face_reuses']}",
f"swap_failures={s['swap_failures']}",
f"lat_ms_last={lat_last:.1f}" if lat_last is not None else "lat_ms_last=None",
f"lat_ms_avg={lat_avg:.1f}" if lat_avg is not None else "lat_ms_avg=None",
f"e2e_ms_last={self._last_e2e_ms:.1f}" if self._last_e2e_ms is not None else "e2e_ms_last=None",
f"brightness_last={brightness:.1f}" if brightness is not None else "brightness_last=None",
f"low_brightness_frames={s['frames_low_brightness']}",
f"primary_sim={similarity:.3f}" if similarity is not None else "primary_sim=None",
f"early_uninit={s['early_uninitialized']}",
f"early_no_source={s['early_no_source']}",
f"cf_enhanced={s['enhanced_frames']}",
]
if self.codeformer_error:
parts.append(f"cf_err={self.codeformer_error}")
logger.info("pipeline_stats " + ' '.join(parts))
def _check_gpu_memory(self):
"""Monitor GPU memory usage to detect resource exhaustion early"""
try:
import torch
if torch.cuda.is_available():
allocated_gb = torch.cuda.memory_allocated() / (1024**3)
reserved_gb = torch.cuda.memory_reserved() / (1024**3)
if allocated_gb > self._gpu_memory_warning_threshold:
logger.warning(f"High GPU memory usage: allocated={allocated_gb:.2f}GB reserved={reserved_gb:.2f}GB")
return False
return True
except Exception:
pass
return True # Assume OK if we can't check
def initialize(self):
if self.initialized:
return True
providers = self._select_providers()
if insightface is None or FaceAnalysis is None:
raise ImportError("insightface (and its deps like onnxruntime) not available. Ensure onnxruntime, onnx, torch installed.")
self.app = FaceAnalysis(name='buffalo_l', providers=providers)
self.app.prepare(ctx_id=0, det_size=(640,640))
# Capture active providers after prepare (best effort)
try:
self._active_providers = getattr(self.app, 'providers', providers)
except Exception:
self._active_providers = providers
# Load swapper
model_path = INSWAPPER_ONNX_PATH
if not os.path.isfile(model_path):
if os.path.isfile(ALT_INSWAPPER_PATH):
model_path = ALT_INSWAPPER_PATH
else:
raise FileNotFoundError(f"Missing InSwapper model (checked {INSWAPPER_ONNX_PATH} and {ALT_INSWAPPER_PATH})")
self.swapper = insightface.model_zoo.get_model(model_path, providers=providers)
self.inswapper_model_path = model_path
logger.info(f"Loaded InSwapper model: {model_path}")
# Optional CodeFormer enhancer
if self.codeformer_enabled:
self._try_load_codeformer()
self.initialized = True
self.loaded = True # legacy attribute for external checks
logger.info('FaceSwapPipeline initialized')
return True
def _select_providers(self) -> List[str] | None:
"""Decide ONNX Runtime providers with GPU preference and diagnostics.
Env controls:
MIRAGE_FORCE_CPU=1 -> force CPU only
MIRAGE_CUDA_ONLY=1 -> request CUDA + CPU fallback (legacy name)
MIRAGE_REQUIRE_GPU=1 -> raise if CUDA provider not available
"""
force_cpu = os.getenv('MIRAGE_FORCE_CPU', '0').lower() in ('1','true','yes','on')
require_gpu = os.getenv('MIRAGE_REQUIRE_GPU', '0').lower() in ('1','true','yes','on')
cuda_only_flag = os.getenv('MIRAGE_CUDA_ONLY', '0').lower() in ('1','true','yes','on')
try:
import onnxruntime as ort # type: ignore
avail = ort.get_available_providers()
try:
ver = ort.__version__ # type: ignore
except Exception:
ver = 'unknown'
logger.info(f"[providers] onnxruntime {ver} available={avail}")
except Exception as e: # noqa: BLE001
logger.warning(f"ONNX Runtime not importable ({e}); letting insightface choose default providers")
return None
if force_cpu:
logger.info('[providers] MIRAGE_FORCE_CPU=1 -> using CPUExecutionProvider only')
return ['CPUExecutionProvider'] if 'CPUExecutionProvider' in avail else None
providers: List[str] = []
if 'CUDAExecutionProvider' in avail:
providers.append('CUDAExecutionProvider')
if 'CPUExecutionProvider' in avail:
providers.append('CPUExecutionProvider')
if 'CUDAExecutionProvider' not in providers:
msg = '[providers] CUDAExecutionProvider NOT available; running on CPU'
if require_gpu or cuda_only_flag:
# escalate to warning / potential exception
logger.warning(msg + ' (require_gpu flag set)')
if require_gpu:
raise RuntimeError('GPU required but CUDAExecutionProvider unavailable')
else:
logger.info(msg)
else:
logger.info(f"[providers] Using providers order: {providers}")
return providers or None
def _ensure_repo_clone(self, target_dir: str) -> bool:
"""Clone CodeFormer repo shallowly if missing. Returns True if directory exists after call."""
try:
if os.path.isdir(target_dir) and os.path.isdir(os.path.join(target_dir, '.git')):
return True
import subprocess, shlex
os.makedirs(target_dir, exist_ok=True)
# If directory empty, clone
if not any(os.scandir(target_dir)):
logger.info('Cloning CodeFormer repository (shallow)...')
cmd = f"git clone --depth 1 https://github.com/sczhou/CodeFormer.git {shlex.quote(target_dir)}"
subprocess.run(cmd, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
return True
except Exception as e: # noqa: BLE001
logger.warning(f"CodeFormer auto-clone failed: {e}")
return False
def _try_load_codeformer(self): # pragma: no cover (runtime GPU path)
if not os.path.isfile(CODEFORMER_PATH):
logger.warning(f"CodeFormer weight missing; skipping: {CODEFORMER_PATH}")
return
repo_root = os.path.join('models', 'codeformer_repo')
try:
if self._ensure_repo_clone(repo_root):
for extra in (repo_root, os.path.join(repo_root, 'CodeFormer')):
if os.path.isdir(extra) and extra not in sys.path:
sys.path.insert(0, extra)
except Exception as clone_err: # noqa: BLE001
logger.debug(f"CodeFormer repo clone/setup failed (continuing with installed packages): {clone_err}")
try:
import torch # type: ignore
except Exception:
logger.warning('Torch missing; cannot enable CodeFormer')
self.codeformer_error = 'torch_missing'
return
# Direct import path used by upstream project (packaged when installed)
# Primary expected path: basicsr.archs.* (weights independent). Some forks use codeformer.archs
CodeFormer = None # type: ignore
try:
from basicsr.archs.codeformer_arch import CodeFormer as _CF # type: ignore
CodeFormer = _CF # type: ignore
except Exception as e:
# Second import path attempt; if both fail capture reason
try:
from codeformer.archs.codeformer_arch import CodeFormer as _CF # type: ignore
CodeFormer = _CF # type: ignore
except Exception as e2:
self.codeformer_error = f"import_failed:{e2}"
logger.warning(f"CodeFormer import failed (basicsr & codeformer paths). Skipping enhancement. Root error: {e2}")
return
try:
from basicsr.archs.rrdbnet_arch import RRDBNet # noqa: F401
except Exception:
# Basicsr usually present (in requirements); if not, can't proceed
logger.warning('basicsr not available; skipping CodeFormer')
return
# facexlib is required for some preprocessing utilities; warn if absent (not fatal for direct arch usage)
try: # pragma: no cover
import facexlib # type: ignore # noqa: F401
except Exception:
logger.info('facexlib not installed; continuing (may reduce CodeFormer effectiveness)')
try:
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
net = CodeFormer(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
connect_list=['32','64','128','256']).to(device)
ckpt = torch.load(CODEFORMER_PATH, map_location='cpu')
if 'params_ema' in ckpt:
net.load_state_dict(ckpt['params_ema'], strict=False)
else:
# Some weights store under 'state_dict'
net.load_state_dict(ckpt.get('state_dict', ckpt), strict=False)
net.eval()
fidelity = min(max(self.codeformer_fidelity, 0.0), 1.0)
class _CFWrap:
def __init__(self, net, device, fidelity):
self.net = net
self.device = device
self.fidelity = fidelity
@torch.no_grad()
def enhance(self, img_bgr: np.ndarray) -> np.ndarray:
import torch, torch.nn.functional as F # type: ignore
img = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
tensor = torch.from_numpy(img).float().to(self.device) / 255.0
tensor = tensor.permute(2,0,1).unsqueeze(0)
try:
out = self.net(tensor, w=self.fidelity, adain=True)[0]
except Exception:
out = self.net(tensor, w=self.fidelity)[0]
out = (out.clamp(0,1)*255).byte().permute(1,2,0).cpu().numpy()
return cv2.cvtColor(out, cv2.COLOR_RGB2BGR)
self.codeformer = _CFWrap(net, device, fidelity)
self.codeformer_loaded = True
logger.info('CodeFormer fully loaded')
except Exception as e:
self.codeformer_error = f"init_failed:{e}"
logger.warning(f"CodeFormer final init failed: {e}")
self.codeformer = None
def _decode_image(self, data) -> np.ndarray:
if isinstance(data, bytes):
arr = np.frombuffer(data, np.uint8)
img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
return img
if isinstance(data, np.ndarray):
return data
if hasattr(data, 'read'):
buff = data.read()
arr = np.frombuffer(buff, np.uint8)
return cv2.imdecode(arr, cv2.IMREAD_COLOR)
raise TypeError('Unsupported image input type')
def set_source_image(self, image_input) -> bool:
if not self.initialized:
self.initialize()
img = self._decode_image(image_input)
if img is None:
logger.error('Failed to decode source image')
return False
faces = self.app.get(img)
if not faces:
logger.error('No face detected in source image')
return False
# Choose the largest face by bbox area
def _area(face):
x1,y1,x2,y2 = face.bbox.astype(int)
return (x2-x1)*(y2-y1)
faces.sort(key=_area, reverse=True)
self.source_face = faces[0]
self.source_img_meta = {'resolution': img.shape[:2], 'num_faces': len(faces)}
logger.info('Source face set')
return True
# Legacy method name alias used by some data channel messages
def set_reference_frame(self, image_input) -> bool: # pragma: no cover - thin shim
return self.set_source_image(image_input)
# Audio processing stubs (voice conversion not yet integrated in new simplified pipeline)
def process_audio_chunk(self, pcm_bytes: bytes) -> bytes: # pragma: no cover
"""Pass-through audio to satisfy legacy interface expectations.
Future: integrate voice conversion here. For now: return original audio data.
"""
return pcm_bytes
def process_frame(self, frame: np.ndarray) -> np.ndarray:
frame_in_ts = time.time()
if not self.initialized or self.swapper is None or self.app is None:
self._stats['early_uninitialized'] += 1
if self.swap_debug:
logger.debug('process_frame: pipeline not fully initialized yet')
return frame
if self.source_face is None:
self._stats['early_no_source'] += 1
if self.swap_debug:
logger.debug('process_frame: no source_face set yet')
return frame
t0 = time.time()
# Brightness analysis (grayscale mean) to understand low-light degradation
try:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
brightness = float(np.mean(gray))
self._stats['brightness_last'] = brightness
if brightness < self.low_brightness_threshold:
self._stats['frames_low_brightness'] += 1
if self.enable_brightness_comp:
# Simple gamma / gain compensation (scale then clip)
gain = self.target_brightness / max(1.0, brightness)
gain = min(gain, 3.0) # clamp to avoid noise amplification
frame = np.clip(frame.astype(np.float32) * gain, 0, 255).astype(np.uint8)
if self.swap_debug:
logger.debug(f'Applied brightness compensation gain={gain:.2f} (brightness={brightness:.1f})')
except Exception:
pass
# Detector preprocessing path for improved low-light detect
det_input = frame
if self.det_clahe:
try:
gray_det = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
if float(np.mean(gray_det)) < (self.low_brightness_threshold + 15):
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
eq = clahe.apply(gray_det)
det_input = cv2.cvtColor(eq, cv2.COLOR_GRAY2BGR)
except Exception:
pass
faces = self.app.get(det_input)
self._last_faces_cache = faces
no_detection = not faces
if no_detection:
# Attempt temporal reuse of last successful face if within ttl
if self._cached_face is not None and self._cached_face_age < self.face_cache_ttl:
faces = [self._cached_face]
self._cached_face_age += 1
if self.swap_debug:
logger.debug(f'process_frame: reusing cached face (age={self._cached_face_age})')
else:
self._cached_face = None
self._cached_face_age = 0
if self.swap_debug:
logger.debug('process_frame: no faces detected, no valid cache')
self._record_latency(time.time() - t0)
self._stats['swap_faces_last'] = 0
self._stats['frames_no_faces'] += 1
self._stats['frames'] += 1
self._frame_index += 1
self._log_periodic()
return frame
# Track if we used cached face and accumulate total faces detected
if no_detection and faces: # faces populated from cache
self._stats['cached_face_reuses'] += 1
elif faces: # fresh detection
self._stats['total_faces_detected'] += len(faces)
# Apply face size filter if enabled
if faces and self.face_min_size > 0:
def _area(face):
x1,y1,x2,y2 = face.bbox.astype(int)
return (x2-x1)*(y2-y1)
filtered_faces = []
for face in faces:
x1,y1,x2,y2 = face.bbox.astype(int)
width, height = x2-x1, y2-y1
if min(width, height) >= self.face_min_size:
filtered_faces.append(face)
faces = filtered_faces
# Sort faces by area and keep top-N
if faces:
def _area(face):
x1,y1,x2,y2 = face.bbox.astype(int)
return (x2-x1)*(y2-y1)
faces.sort(key=_area, reverse=True)
# Periodic GPU memory check
if self._frame_index > 0 and (self._frame_index % self._memory_check_interval) == 0:
if not self._check_gpu_memory():
logger.warning("GPU memory pressure detected - performance may degrade")
out = frame
count = 0
similarities: List[float] = []
for idx, f in enumerate(faces[:self.max_faces]):
try:
# Compute similarity to source embedding (cosine) for diagnostics
try:
src_emb = getattr(self.source_face, 'normed_embedding', None)
tgt_emb = getattr(f, 'normed_embedding', None)
sim = None
if src_emb is not None and tgt_emb is not None:
# Both are numpy arrays
a = src_emb.astype(np.float32)
b = tgt_emb.astype(np.float32)
denom = (np.linalg.norm(a)*np.linalg.norm(b) + 1e-6)
sim = float(np.dot(a, b) / denom)
similarities.append(sim)
if idx == 0:
self._stats['last_primary_similarity'] = sim
if self.swap_debug and sim is not None and sim < self.similarity_warn_threshold:
logger.debug(f'Low similarity primary face sim={sim:.3f}')
except Exception:
pass
# NOTE: Previously attempted naive small-face ROI upscale introduced moving black box artifacts
# because face landmark coordinates remained in original frame space. We disable that path by default.
# If re-enabled in future, we must recompute detection landmarks on the upscaled ROI.
try:
out = self.swapper.get(out, f, self.source_face, paste_back=True)
count += 1
except Exception as e:
self._stats['swap_failures'] += 1
logger.debug(f"Swap failed for face {idx}: {e}")
except Exception as e:
self._stats['swap_failures'] += 1
logger.debug(f"Face processing failed for face {idx}: {e}")
self._stats['total_faces_swapped'] += count
# Cache first face for reuse
if faces:
self._cached_face = faces[0]
self._cached_face_age = 0
# Optional debug overlay for visual confirmation
if count > 0 and os.getenv('MIRAGE_DEBUG_OVERLAY', '0').lower() in ('1','true','yes','on'):
try:
for i, f in enumerate(faces[:self.max_faces]):
x1,y1,x2,y2 = f.bbox.astype(int)
cv2.rectangle(out, (x1,y1), (x2,y2), (0,255,0), 2)
label = 'SWAP'
if i < len(similarities) and similarities[i] is not None:
label += f' {similarities[i]:.2f}'
cv2.putText(out, label, (x1, max(0,y1-5)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 1, cv2.LINE_AA)
except Exception:
pass
if self.swap_debug:
logger.debug(f'process_frame: detected={len(faces)} swapped={count} stride={self.codeformer_frame_stride} apply_cf={count>0 and (self._frame_index % self.codeformer_frame_stride == 0)}')
# CodeFormer stride / face-region logic
apply_cf = (
self.codeformer is not None and
self.codeformer_enabled and
self.codeformer_frame_stride > 0 and
(self._frame_index % self.codeformer_frame_stride == 0)
)
if count > 0 and apply_cf:
cf_t0 = time.time()
try:
if self.codeformer_face_only and faces:
# Use largest face bbox
f0 = faces[0]
x1,y1,x2,y2 = f0.bbox.astype(int)
h, w = out.shape[:2]
mx = int((x2 - x1) * self.codeformer_face_margin)
my = int((y2 - y1) * self.codeformer_face_margin)
x1c = max(0, x1 - mx); y1c = max(0, y1 - my)
x2c = min(w, x2 + mx); y2c = min(h, y2 + my)
region = out[y1c:y2c, x1c:x2c]
if region.size > 0:
enhanced = self.codeformer.enhance(region)
out[y1c:y2c, x1c:x2c] = enhanced
else:
out = self.codeformer.enhance(out)
self._stats['enhanced_frames'] += 1
cf_dt = (time.time() - cf_t0)*1000.0
self._codeformer_lat_hist.append(cf_dt)
if len(self._codeformer_lat_hist) > 200:
self._codeformer_lat_hist.pop(0)
except Exception as e:
logger.debug(f"CodeFormer enhancement failed: {e}")
self._record_latency(time.time() - t0)
self._stats['swap_faces_last'] = count
self._stats['frames'] += 1
self._frame_index += 1
# End-to-end latency including pre-detection + swap path
self._last_e2e_ms = (time.time() - frame_in_ts) * 1000.0
self._e2e_hist.append(self._last_e2e_ms)
if len(self._e2e_hist) > 200:
self._e2e_hist.pop(0)
# Periodic log emission
self._log_periodic()
return out
def _record_latency(self, dt: float):
ms = dt * 1000.0
self._stats['last_latency_ms'] = ms
self._lat_hist.append(ms)
if len(self._lat_hist) > 200:
self._lat_hist.pop(0)
self._stats['avg_latency_ms'] = float(np.mean(self._lat_hist)) if self._lat_hist else None
def get_stats(self) -> Dict[str, Any]:
cf_avg = float(np.mean(self._codeformer_lat_hist)) if self._codeformer_lat_hist else None
info: Dict[str, Any] = dict(
self._stats,
initialized=self.initialized,
codeformer_fidelity=self.codeformer_fidelity if self.codeformer is not None else None,
codeformer_loaded=self.codeformer_loaded,
codeformer_frame_stride=self.codeformer_frame_stride,
codeformer_face_only=self.codeformer_face_only,
codeformer_avg_latency_ms=cf_avg,
max_faces=self.max_faces,
debug_overlay=os.getenv('MIRAGE_DEBUG_OVERLAY', '0'),
e2e_latency_ms=self._last_e2e_ms,
e2e_latency_avg_ms=(float(np.mean(self._e2e_hist)) if self._e2e_hist else None),
inswapper_model_path=self.inswapper_model_path,
face_upscale_enabled=self.enable_face_upscale,
codeformer_error=self.codeformer_error,
)
# Provider diagnostics (best-effort)
try: # pragma: no cover
import onnxruntime as ort # type: ignore
info['available_providers'] = ort.get_available_providers()
info['active_providers'] = getattr(self, '_active_providers', None)
except Exception:
pass
return info
# Legacy interface used by webrtc_server data channel
def get_performance_stats(self) -> Dict[str, Any]: # pragma: no cover simple delegate
stats = self.get_stats()
# Provide alias field names expected historically (if any)
stats['frames_processed'] = stats.get('frames')
return stats
# Backwards compatibility for earlier server expecting process_video_frame
def process_video_frame(self, frame: np.ndarray, frame_idx: int | None = None) -> np.ndarray:
return self.process_frame(frame)
def cleanup_resources(self):
"""Clean up GPU resources to prevent hang on reconnection"""
try:
if hasattr(self, 'swapper') and self.swapper is not None:
# Force garbage collection of ONNX sessions
del self.swapper
self.swapper = None
if hasattr(self, 'codeformer') and self.codeformer is not None:
del self.codeformer
self.codeformer = None
self.codeformer_loaded = False
# Clear GPU cache if available
try:
import torch
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info("GPU cache cleared during cleanup")
except Exception:
pass
logger.info("Pipeline resources cleaned up")
except Exception as e:
logger.warning(f"Resource cleanup failed: {e}")
def reset_for_reconnection(self):
"""Reset pipeline state for clean reconnection without full reinitialization"""
# Clear cached face to prevent stale data
self._cached_face = None
self._cached_face_age = 0
# Reset some stats but keep totals for debugging
self._stats['swap_faces_last'] = 0
self._stats['brightness_last'] = None
self._stats['last_primary_similarity'] = None
# Clear latency histories to start fresh
self._lat_hist.clear()
self._e2e_hist.clear()
self._codeformer_lat_hist.clear()
# Force GPU memory cleanup to prevent hanging on reconnection
try:
import torch
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize() # Ensure all operations complete
logger.info("GPU cache cleared and synchronized during reset")
except Exception:
pass
logger.info("Pipeline state reset for reconnection")
# Singleton access similar to previous pattern
_pipeline_instance: Optional[FaceSwapPipeline] = None
def get_pipeline() -> FaceSwapPipeline:
global _pipeline_instance
if _pipeline_instance is None:
_pipeline_instance = FaceSwapPipeline()
_pipeline_instance.initialize()
return _pipeline_instance
def reset_pipeline():
"""Reset pipeline for clean reconnection - called by WebRTC server on connection reset"""
global _pipeline_instance
if _pipeline_instance is not None:
_pipeline_instance.reset_for_reconnection()
def cleanup_pipeline():
"""Full cleanup for shutdown - releases GPU resources"""
global _pipeline_instance
if _pipeline_instance is not None:
_pipeline_instance.cleanup_resources()
_pipeline_instance = None