Spaces:
Running
Running
File size: 12,440 Bytes
d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 60a36b0 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 a9dea45 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import gradio as gr
import cv2
import numpy
import os
import random
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Globals
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
last_file = None
img_mode = "RGBA"
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Utilities
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def rnd_string(x: int) -> str:
"""Returns a string of 'x' random characters."""
characters = "abcdefghijklmnopqrstuvwxyz_0123456789"
result = "".join((random.choice(characters)) for _ in range(x))
return result
def reset():
"""Resets the Image components and deletes the last processed image."""
global last_file
if last_file:
try:
print(f"Deleting {last_file} ...")
os.remove(last_file)
except Exception as e:
print("Delete error:", e)
last_file = None
return gr.update(value=None), gr.update(value=None)
def has_transparency(img):
"""
Check for transparency in a PIL image.
https://stackoverflow.com/questions/43864101/python-pil-check-if-image-is-transparent
"""
if img.info.get("transparency", None) is not None:
return True
if img.mode == "P":
transparent = img.info.get("transparency", -1)
for _, index in img.getcolors():
if index == transparent:
return True
elif img.mode == "RGBA":
extrema = img.getextrema()
if extrema[3][0] < 255:
return True
return False
def image_properties(img):
"""Return resolution & color mode of the input image; set global img_mode."""
global img_mode
if img:
if has_transparency(img):
img_mode = "RGBA"
else:
img_mode = "RGB"
properties = f"Resolution: Width: {img.size[0]}, Height: {img.size[1]} | Color Mode: {img_mode}"
return properties
def model_tip_text(model_name: str) -> str:
"""Return human-friendly guidance for the chosen model."""
tips = {
"RealESRGAN_x4plus": (
"**RealESRGAN_x4plus (4Γ)** β Best for photoreal images (portraits, landscapes). "
"Balanced detail recovery. Good default for Flux realism."
),
"RealESRNet_x4plus": (
"**RealESRNet_x4plus (4Γ)** β Softer but great on noisy/compressed sources "
"(old JPEGs, screenshots)."
),
"RealESRGAN_x4plus_anime_6B": (
"**RealESRGAN_x4plus_anime_6B (4Γ)** β For anime/illustrations/line art only. "
"Not recommended for real-life photos."
),
"RealESRGAN_x2plus": (
"**RealESRGAN_x2plus (2Γ)** β Faster, lighter 2Γ cleanup when you don't need 4Γ."
),
"realesr-general-x4v3": (
"**realesr-general-x4v3 (4Γ)** β Versatile mixed-content model with adjustable denoise. "
"**Denoise Strength** slider only affects this model (blends with the WDN variant). "
"Try 0.3β0.5 for slightly cleaner, sharper results."
),
}
return tips.get(model_name, "")
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Core upscaling
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
"""Real-ESRGAN function to restore (and upscale) images with robust defaults."""
if img is None:
return
# ----- Select backbone + weights -----
if model_name == 'RealESRGAN_x4plus': # x4 RRDBNet model
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
elif model_name == 'RealESRNet_x4plus': # x4 RRDBNet model
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
elif model_name == 'RealESRGAN_x4plus_anime_6B': # x4 RRDBNet model with 6 blocks
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
elif model_name == 'RealESRGAN_x2plus': # x2 RRDBNet model
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
netscale = 2
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
elif model_name == 'realesr-general-x4v3': # x4 VGG-style model (S size)
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
netscale = 4
# We'll ensure BOTH base and WDN weights exist; order matters for DNI.
file_url = [
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth',
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth'
]
else:
raise ValueError(f"Unknown model: {model_name}")
# ----- Ensure weights are on disk -----
# For the general-x4v3 case we download both; for others single file is fine.
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
weights_dir = os.path.join(ROOT_DIR, 'weights')
os.makedirs(weights_dir, exist_ok=True)
# Track model paths
local_paths = []
for url in file_url:
fname = os.path.basename(url)
local_path = os.path.join(weights_dir, fname)
if not os.path.isfile(local_path):
local_path = load_file_from_url(url=url, model_dir=weights_dir, progress=True)
local_paths.append(local_path)
# Default path(s)
if model_name == 'realesr-general-x4v3':
# Order: [base, wdn] then set DNI weights accordingly
base_path = os.path.join(weights_dir, 'realesr-general-x4v3.pth')
wdn_path = os.path.join(weights_dir, 'realesr-general-wdn-x4v3.pth')
model_path = [base_path, wdn_path]
denoise_strength = float(denoise_strength)
# Weight for WDN equals denoise_strength (cleaner); base gets the remainder
dni_weight = [1.0 - denoise_strength, denoise_strength]
else:
model_path = os.path.join(weights_dir, f"{model_name}.pth")
dni_weight = None
# ----- CUDA / precision / tiling -----
# Be defensive: cv2.cuda may not exist in CPU-only builds.
use_cuda = False
try:
use_cuda = hasattr(cv2, "cuda") and cv2.cuda.getCudaEnabledDeviceCount() > 0
except Exception:
use_cuda = False
gpu_id = 0 if use_cuda else None
upsampler = RealESRGANer(
scale=netscale,
model_path=model_path,
dni_weight=dni_weight,
model=model,
tile=256, # Safe VRAM default; increase if you have headroom
tile_pad=10,
pre_pad=10,
half=bool(use_cuda), # FP16 on GPU
gpu_id=gpu_id
)
# ----- Optional face enhancement -----
face_enhancer = None
if face_enhance:
from gfpgan import GFPGANer
face_enhancer = GFPGANer(
model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
upscale=outscale,
arch='clean',
channel_multiplier=2,
bg_upsampler=upsampler
)
# ----- Convert PIL -> cv2 (handle RGB/RGBA) -----
cv_img = numpy.array(img)
if cv_img.ndim == 3 and cv_img.shape[2] == 4:
cv_img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA)
else:
cv_img = cv2.cvtColor(cv_img, cv2.COLOR_RGB2BGR)
# ----- Enhance -----
try:
if face_enhancer:
_, _, output = face_enhancer.enhance(cv_img, has_aligned=False, only_center_face=False, paste_back=True)
else:
output, _ = upsampler.enhance(cv_img, outscale=int(outscale))
except RuntimeError as error:
print('Error', error)
print('Tip: If you hit CUDA OOM, try a smaller tile size (e.g., 128).')
return None
# ----- cv2 -> RGBA/RGB for Gradio, also save -----
if output.ndim == 3 and output.shape[2] == 4:
display_img = cv2.cvtColor(output, cv2.COLOR_BGRA2RGBA)
extension = 'png'
else:
display_img = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
extension = 'jpg'
out_filename = f"output_{rnd_string(8)}.{extension}"
try:
cv2.imwrite(out_filename, output)
global last_file
last_file = out_filename
except Exception as e:
print("Save error:", e)
return display_img # ndarray so Gradio displays immediately
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# UI
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def main():
with gr.Blocks(title="Real-ESRGAN Gradio Demo", theme="ParityError/Interstellar") as demo:
gr.Markdown("## Image Upscaler")
with gr.Accordion("Upscaling options", open=True):
with gr.Row():
model_name = gr.Dropdown(
label="Upscaler model",
choices=[
"RealESRGAN_x4plus",
"RealESRNet_x4plus",
"RealESRGAN_x4plus_anime_6B",
"RealESRGAN_x2plus",
"realesr-general-x4v3",
],
value="RealESRGAN_x4plus", # photoreal default
show_label=True
)
denoise_strength = gr.Slider(
label="Denoise Strength (only for realesr-general-x4v3)",
minimum=0, maximum=1, step=0.1, value=0.5
)
outscale = gr.Slider(
label="Resolution upscale",
minimum=1, maximum=6, step=1, value=4, show_label=True
)
face_enhance = gr.Checkbox(label="Face Enhancement (GFPGAN)", value=False)
# Model tips panel (auto-updates)
model_tips = gr.Markdown(model_tip_text("RealESRGAN_x4plus"))
with gr.Row():
with gr.Group():
input_image = gr.Image(label="Input Image", type="pil", image_mode="RGBA")
input_image_properties = gr.Textbox(label="Image Properties", max_lines=1)
output_image = gr.Image(label="Output Image", image_mode="RGBA")
with gr.Row():
reset_btn = gr.Button("Remove images")
restore_btn = gr.Button("Upscale")
# Event listeners:
input_image.change(fn=image_properties, inputs=input_image, outputs=input_image_properties)
model_name.change(fn=model_tip_text, inputs=model_name, outputs=model_tips)
restore_btn.click(
fn=realesrgan,
inputs=[input_image, model_name, denoise_strength, face_enhance, outscale],
outputs=output_image
)
reset_btn.click(fn=reset, inputs=[], outputs=[output_image, input_image])
gr.Markdown("") # spacer
demo.launch()
if __name__ == "__main__":
main()
|