File size: 12,440 Bytes
d69ad9e
 
 
 
 
 
 
 
 
 
 
8c30d17
 
 
d69ad9e
 
 
 
8c30d17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d69ad9e
8c30d17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d69ad9e
 
8c30d17
d69ad9e
 
 
 
8c30d17
d69ad9e
 
 
 
8c30d17
d69ad9e
 
 
 
8c30d17
d69ad9e
 
 
 
8c30d17
d69ad9e
 
 
8c30d17
d69ad9e
8c30d17
 
d69ad9e
 
8c30d17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d69ad9e
 
 
 
 
8c30d17
d69ad9e
 
8c30d17
 
d69ad9e
 
8c30d17
 
d69ad9e
 
 
 
 
 
 
8c30d17
 
d69ad9e
8c30d17
d69ad9e
8c30d17
 
 
 
d69ad9e
8c30d17
d69ad9e
8c30d17
 
d69ad9e
8c30d17
d69ad9e
 
8c30d17
 
 
 
 
 
 
d69ad9e
8c30d17
 
d69ad9e
8c30d17
 
d69ad9e
 
 
8c30d17
 
d69ad9e
8c30d17
d69ad9e
 
8c30d17
 
 
d69ad9e
60a36b0
8c30d17
d69ad9e
8c30d17
d69ad9e
8c30d17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9dea45
8c30d17
 
 
 
 
 
 
 
 
d69ad9e
 
 
 
 
8c30d17
d69ad9e
 
 
 
 
 
8c30d17
d69ad9e
8c30d17
 
 
 
d69ad9e
8c30d17
 
 
d69ad9e
 
 
 
 
8c30d17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import gradio as gr
import cv2
import numpy
import os
import random
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.download_util import load_file_from_url

from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact

# ────────────────────────────────────────────────────────
# Globals
# ────────────────────────────────────────────────────────
last_file = None
img_mode = "RGBA"


# ────────────────────────────────────────────────────────
# Utilities
# ────────────────────────────────────────────────────────
def rnd_string(x: int) -> str:
    """Returns a string of 'x' random characters."""
    characters = "abcdefghijklmnopqrstuvwxyz_0123456789"
    result = "".join((random.choice(characters)) for _ in range(x))
    return result


def reset():
    """Resets the Image components and deletes the last processed image."""
    global last_file
    if last_file:
        try:
            print(f"Deleting {last_file} ...")
            os.remove(last_file)
        except Exception as e:
            print("Delete error:", e)
        last_file = None
    return gr.update(value=None), gr.update(value=None)


def has_transparency(img):
    """
    Check for transparency in a PIL image.
    https://stackoverflow.com/questions/43864101/python-pil-check-if-image-is-transparent
    """
    if img.info.get("transparency", None) is not None:
        return True
    if img.mode == "P":
        transparent = img.info.get("transparency", -1)
        for _, index in img.getcolors():
            if index == transparent:
                return True
    elif img.mode == "RGBA":
        extrema = img.getextrema()
        if extrema[3][0] < 255:
            return True
    return False


def image_properties(img):
    """Return resolution & color mode of the input image; set global img_mode."""
    global img_mode
    if img:
        if has_transparency(img):
            img_mode = "RGBA"
        else:
            img_mode = "RGB"
        properties = f"Resolution: Width: {img.size[0]}, Height: {img.size[1]}  |  Color Mode: {img_mode}"
        return properties


def model_tip_text(model_name: str) -> str:
    """Return human-friendly guidance for the chosen model."""
    tips = {
        "RealESRGAN_x4plus": (
            "**RealESRGAN_x4plus (4Γ—)** β€” Best for photoreal images (portraits, landscapes). "
            "Balanced detail recovery. Good default for Flux realism."
        ),
        "RealESRNet_x4plus": (
            "**RealESRNet_x4plus (4Γ—)** β€” Softer but great on noisy/compressed sources "
            "(old JPEGs, screenshots)."
        ),
        "RealESRGAN_x4plus_anime_6B": (
            "**RealESRGAN_x4plus_anime_6B (4Γ—)** β€” For anime/illustrations/line art only. "
            "Not recommended for real-life photos."
        ),
        "RealESRGAN_x2plus": (
            "**RealESRGAN_x2plus (2Γ—)** β€” Faster, lighter 2Γ— cleanup when you don't need 4Γ—."
        ),
        "realesr-general-x4v3": (
            "**realesr-general-x4v3 (4Γ—)** β€” Versatile mixed-content model with adjustable denoise. "
            "**Denoise Strength** slider only affects this model (blends with the WDN variant). "
            "Try 0.3–0.5 for slightly cleaner, sharper results."
        ),
    }
    return tips.get(model_name, "")


# ────────────────────────────────────────────────────────
# Core upscaling
# ────────────────────────────────────────────────────────
def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
    """Real-ESRGAN function to restore (and upscale) images with robust defaults."""
    if img is None:
        return

    # ----- Select backbone + weights -----
    if model_name == 'RealESRGAN_x4plus':  # x4 RRDBNet model
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
        netscale = 4
        file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']

    elif model_name == 'RealESRNet_x4plus':  # x4 RRDBNet model
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
        netscale = 4
        file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']

    elif model_name == 'RealESRGAN_x4plus_anime_6B':  # x4 RRDBNet model with 6 blocks
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
        netscale = 4
        file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']

    elif model_name == 'RealESRGAN_x2plus':  # x2 RRDBNet model
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
        netscale = 2
        file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']

    elif model_name == 'realesr-general-x4v3':  # x4 VGG-style model (S size)
        model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
        netscale = 4
        # We'll ensure BOTH base and WDN weights exist; order matters for DNI.
        file_url = [
            'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth',
            'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth'
        ]

    else:
        raise ValueError(f"Unknown model: {model_name}")

    # ----- Ensure weights are on disk -----
    # For the general-x4v3 case we download both; for others single file is fine.
    ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
    weights_dir = os.path.join(ROOT_DIR, 'weights')
    os.makedirs(weights_dir, exist_ok=True)

    # Track model paths
    local_paths = []
    for url in file_url:
        fname = os.path.basename(url)
        local_path = os.path.join(weights_dir, fname)
        if not os.path.isfile(local_path):
            local_path = load_file_from_url(url=url, model_dir=weights_dir, progress=True)
        local_paths.append(local_path)

    # Default path(s)
    if model_name == 'realesr-general-x4v3':
        # Order: [base, wdn] then set DNI weights accordingly
        base_path = os.path.join(weights_dir, 'realesr-general-x4v3.pth')
        wdn_path = os.path.join(weights_dir, 'realesr-general-wdn-x4v3.pth')
        model_path = [base_path, wdn_path]
        denoise_strength = float(denoise_strength)
        # Weight for WDN equals denoise_strength (cleaner); base gets the remainder
        dni_weight = [1.0 - denoise_strength, denoise_strength]
    else:
        model_path = os.path.join(weights_dir, f"{model_name}.pth")
        dni_weight = None

    # ----- CUDA / precision / tiling -----
    # Be defensive: cv2.cuda may not exist in CPU-only builds.
    use_cuda = False
    try:
        use_cuda = hasattr(cv2, "cuda") and cv2.cuda.getCudaEnabledDeviceCount() > 0
    except Exception:
        use_cuda = False

    gpu_id = 0 if use_cuda else None

    upsampler = RealESRGANer(
        scale=netscale,
        model_path=model_path,
        dni_weight=dni_weight,
        model=model,
        tile=256,          # Safe VRAM default; increase if you have headroom
        tile_pad=10,
        pre_pad=10,
        half=bool(use_cuda),  # FP16 on GPU
        gpu_id=gpu_id
    )

    # ----- Optional face enhancement -----
    face_enhancer = None
    if face_enhance:
        from gfpgan import GFPGANer
        face_enhancer = GFPGANer(
            model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
            upscale=outscale,
            arch='clean',
            channel_multiplier=2,
            bg_upsampler=upsampler
        )

    # ----- Convert PIL -> cv2 (handle RGB/RGBA) -----
    cv_img = numpy.array(img)
    if cv_img.ndim == 3 and cv_img.shape[2] == 4:
        cv_img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA)
    else:
        cv_img = cv2.cvtColor(cv_img, cv2.COLOR_RGB2BGR)

    # ----- Enhance -----
    try:
        if face_enhancer:
            _, _, output = face_enhancer.enhance(cv_img, has_aligned=False, only_center_face=False, paste_back=True)
        else:
            output, _ = upsampler.enhance(cv_img, outscale=int(outscale))
    except RuntimeError as error:
        print('Error', error)
        print('Tip: If you hit CUDA OOM, try a smaller tile size (e.g., 128).')
        return None

    # ----- cv2 -> RGBA/RGB for Gradio, also save -----
    if output.ndim == 3 and output.shape[2] == 4:
        display_img = cv2.cvtColor(output, cv2.COLOR_BGRA2RGBA)
        extension = 'png'
    else:
        display_img = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
        extension = 'jpg'

    out_filename = f"output_{rnd_string(8)}.{extension}"
    try:
        cv2.imwrite(out_filename, output)
        global last_file
        last_file = out_filename
    except Exception as e:
        print("Save error:", e)

    return display_img  # ndarray so Gradio displays immediately


# ────────────────────────────────────────────────────────
# UI
# ────────────────────────────────────────────────────────
def main():
    with gr.Blocks(title="Real-ESRGAN Gradio Demo", theme="ParityError/Interstellar") as demo:
        gr.Markdown("## Image Upscaler")

        with gr.Accordion("Upscaling options", open=True):
            with gr.Row():
                model_name = gr.Dropdown(
                    label="Upscaler model",
                    choices=[
                        "RealESRGAN_x4plus",
                        "RealESRNet_x4plus",
                        "RealESRGAN_x4plus_anime_6B",
                        "RealESRGAN_x2plus",
                        "realesr-general-x4v3",
                    ],
                    value="RealESRGAN_x4plus",  # photoreal default
                    show_label=True
                )
                denoise_strength = gr.Slider(
                    label="Denoise Strength (only for realesr-general-x4v3)",
                    minimum=0, maximum=1, step=0.1, value=0.5
                )
                outscale = gr.Slider(
                    label="Resolution upscale",
                    minimum=1, maximum=6, step=1, value=4, show_label=True
                )
                face_enhance = gr.Checkbox(label="Face Enhancement (GFPGAN)", value=False)

        # Model tips panel (auto-updates)
        model_tips = gr.Markdown(model_tip_text("RealESRGAN_x4plus"))

        with gr.Row():
            with gr.Group():
                input_image = gr.Image(label="Input Image", type="pil", image_mode="RGBA")
                input_image_properties = gr.Textbox(label="Image Properties", max_lines=1)
            output_image = gr.Image(label="Output Image", image_mode="RGBA")

        with gr.Row():
            reset_btn = gr.Button("Remove images")
            restore_btn = gr.Button("Upscale")

        # Event listeners:
        input_image.change(fn=image_properties, inputs=input_image, outputs=input_image_properties)
        model_name.change(fn=model_tip_text, inputs=model_name, outputs=model_tips)

        restore_btn.click(
            fn=realesrgan,
            inputs=[input_image, model_name, denoise_strength, face_enhance, outscale],
            outputs=output_image
        )
        reset_btn.click(fn=reset, inputs=[], outputs=[output_image, input_image])

        gr.Markdown("")  # spacer

    demo.launch()


if __name__ == "__main__":
    main()