Spaces:
Running
Running
File size: 24,488 Bytes
93e3fa3 5df8e50 93e3fa3 d69ad9e 3ec4287 356195b 93e3fa3 3ec4287 d69ad9e 8c30d17 d69ad9e 8c30d17 93e3fa3 8c30d17 93e3fa3 8c30d17 3ec4287 356195b 3ec4287 8c30d17 5df8e50 8c30d17 3ec4287 8c30d17 d69ad9e 8c30d17 93e3fa3 3ec4287 d69ad9e 8c30d17 93e3fa3 3ec4287 d69ad9e 8c30d17 93e3fa3 3ec4287 d69ad9e 8c30d17 93e3fa3 3ec4287 d69ad9e 8c30d17 93e3fa3 d69ad9e 8c30d17 d69ad9e 8c30d17 93e3fa3 8c30d17 5df8e50 8c30d17 93e3fa3 8c30d17 93e3fa3 8c30d17 b7f0cd8 8c30d17 d69ad9e 5df8e50 d69ad9e 93e3fa3 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 93e3fa3 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 93e3fa3 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 93e3fa3 d69ad9e 356195b b7f0cd8 356195b d69ad9e b1ca0b6 8c30d17 d69ad9e 60a36b0 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 93e3fa3 8c30d17 a9dea45 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 d69ad9e 8c30d17 b1ca0b6 356195b b1ca0b6 356195b d69ad9e b1ca0b6 d69ad9e b1ca0b6 d69ad9e 356195b d69ad9e 356195b b1ca0b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# TorchVision compat shim (MUST be before importing basicsr)
# Fixes: ModuleNotFoundError: torchvision.transforms.functional_tensor
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
import sys, types
try:
import torchvision.transforms.functional_tensor as _ft # noqa: F401
except Exception:
from torchvision.transforms import functional as _F
_mod = types.ModuleType("torchvision.transforms.functional_tensor")
_mod.rgb_to_grayscale = _F.rgb_to_grayscale
sys.modules["torchvision.transforms.functional_tensor"] = _mod
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Spaces ZeroGPU decorator (safe no-op locally)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
try:
import spaces
GPU = spaces.GPU
except Exception:
def GPU(*args, **kwargs):
def _wrap(f): return f
return _wrap
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Standard imports
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
import gradio as gr
import cv2
import numpy
import os
import random
import inspect
from pathlib import Path
import zipfile
import tempfile
from basicsr.archs.rrdbnet_arch import RRDBNet as _RRDBNet
from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Globals
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
last_file = None
img_mode = "RGBA"
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Utilities
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def rnd_string(x: int) -> str:
characters = "abcdefghijklmnopqrstuvwxyz_0123456789"
return "".join((random.choice(characters)) for _ in range(x))
def reset():
global last_file
if last_file:
try:
print(f"Deleting {last_file} ...")
os.remove(last_file)
except Exception as e:
print("Delete error:", e)
last_file = None
return gr.update(value=None), gr.update(value=None)
def has_transparency(img):
if img.info.get("transparency", None) is not None:
return True
if img.mode == "P":
transparent = img.info.get("transparency", -1)
for _, index in img.getcolors():
if index == transparent:
return True
elif img.mode == "RGBA":
extrema = img.getextrema()
if extrema[3][0] < 255:
return True
return False
def image_properties(img):
global img_mode
if img:
img_mode = "RGBA" if has_transparency(img) else "RGB"
return f"Resolution: Width: {img.size[0]}, Height: {img.size[1]} | Color Mode: {img_mode}"
def model_tip_text(model_name: str) -> str:
tips = {
"RealESRGAN_x4plus": (
"**RealESRGAN_x4plus (4Γ)** β Best for photoreal images (portraits, landscapes). "
"Balanced detail recovery. Good default for Flux realism."
),
"RealESRNet_x4plus": (
"**RealESRNet_x4plus (4Γ)** β Softer but great on noisy/compressed sources "
"(old JPEGs, screenshots)."
),
"RealESRGAN_x4plus_anime_6B": (
"**RealESRGAN_x4plus_anime_6B (4Γ)** β For anime/illustrations/line art only. "
"Not recommended for real-life photos."
),
"RealESRGAN_x2plus": (
"**RealESRGAN_x2plus (2Γ)** β Faster, lighter 2Γ cleanup when you don't need 4Γ."
),
"realesr-general-x4v3": (
"**realesr-general-x4v3 (4Γ)** β Versatile mixed-content model with adjustable denoise. "
"**Denoise Strength** slider only affects this model (blends with the WDN variant). "
"Try 0.3β0.5 for slightly cleaner, sharper results."
),
}
return tips.get(model_name, "")
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# RRDBNet builder that tolerates different Basicsr signatures
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def build_rrdb(scale: int, num_block: int):
"""
Creates an RRDBNet across several possible constructor signatures used by basicsr/realesrgan.
Tries, in order:
1) keyword style (num_in_ch/num_out_ch/num_feat/num_block/num_grow_ch/scale)
2) alt keyword style (in_nc/out_nc/nf/nb/gc/sf)
3) positional with gc before scale
4) positional with scale before gc
"""
# Try keyword: "num_*" + "scale"
try:
return _RRDBNet(
num_in_ch=3, num_out_ch=3,
num_feat=64, num_block=num_block,
num_grow_ch=32, scale=scale
)
except TypeError:
pass
# Try keyword: "in_nc/out_nc" + "sf"
try:
return _RRDBNet(
in_nc=3, out_nc=3,
nf=64, nb=num_block,
gc=32, sf=scale
)
except TypeError:
pass
# Inspect parameters to guess positional order
params = list(inspect.signature(_RRDBNet).parameters.keys())
# Common positional (gc, scale) order
try:
return _RRDBNet(3, 3, 64, num_block, 32, scale)
except TypeError:
pass
# Alternate positional (scale, gc) order
try:
return _RRDBNet(3, 3, 64, num_block, scale, 32)
except TypeError as e:
raise TypeError(f"RRDBNet signature not recognized: {e}")
#Factor an upsampler builder
def get_upsampler(model_name: str, outscale: int, tile: int = 256):
# Build the same backbone/weights as in realesrgan(), but return a ready RealESRGANer
if model_name == 'RealESRGAN_x4plus':
model = build_rrdb(scale=4, num_block=23); netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
elif model_name == 'RealESRNet_x4plus':
model = build_rrdb(scale=4, num_block=23); netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
elif model_name == 'RealESRGAN_x4plus_anime_6B':
model = build_rrdb(scale=4, num_block=6); netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
elif model_name == 'RealESRGAN_x2plus':
model = build_rrdb(scale=2, num_block=23); netscale = 2
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
elif model_name == 'realesr-general-x4v3':
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu'); netscale = 4
file_url = [
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth',
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth'
]
else:
raise ValueError(f"Unknown model: {model_name}")
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
weights_dir = os.path.join(ROOT_DIR, 'weights')
os.makedirs(weights_dir, exist_ok=True)
for url in file_url:
fname = os.path.basename(url)
local_path = os.path.join(weights_dir, fname)
if not os.path.isfile(local_path):
load_file_from_url(url=url, model_dir=weights_dir, progress=True)
if model_name == 'realesr-general-x4v3':
model_path = [
os.path.join(weights_dir, 'realesr-general-x4v3.pth'),
os.path.join(weights_dir, 'realesr-general-wdn-x4v3.pth'),
]
dni_weight = None # supplied at call site if using denoise blend
else:
model_path = os.path.join(weights_dir, f"{model_name}.pth")
dni_weight = None
use_cuda = False
try:
use_cuda = hasattr(cv2, "cuda") and cv2.cuda.getCudaEnabledDeviceCount() > 0
except Exception:
use_cuda = False
gpu_id = 0 if use_cuda else None
upsampler = RealESRGANer(
scale=netscale,
model_path=model_path,
dni_weight=dni_weight,
model=model,
tile=tile or 256,
tile_pad=10,
pre_pad=10,
half=bool(use_cuda),
gpu_id=gpu_id
)
return upsampler, netscale, use_cuda, model_path
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Core upscaling
# Decorated for Hugging Face Spaces ZeroGPU
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
@GPU() # lets Spaces know this function uses GPU; safe no-op locally
def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
if img is None:
return
# ----- Select backbone + weights -----
if model_name == 'RealESRGAN_x4plus':
model = build_rrdb(scale=4, num_block=23); netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
elif model_name == 'RealESRNet_x4plus':
model = build_rrdb(scale=4, num_block=23); netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
elif model_name == 'RealESRGAN_x4plus_anime_6B':
model = build_rrdb(scale=4, num_block=6); netscale = 4
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
elif model_name == 'RealESRGAN_x2plus':
model = build_rrdb(scale=2, num_block=23); netscale = 2
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
elif model_name == 'realesr-general-x4v3':
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu'); netscale = 4
file_url = [
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth',
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth'
]
else:
raise ValueError(f"Unknown model: {model_name}")
# ----- Ensure weights on disk -----
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
weights_dir = os.path.join(ROOT_DIR, 'weights')
os.makedirs(weights_dir, exist_ok=True)
for url in file_url:
fname = os.path.basename(url)
local_path = os.path.join(weights_dir, fname)
if not os.path.isfile(local_path):
load_file_from_url(url=url, model_dir=weights_dir, progress=True)
if model_name == 'realesr-general-x4v3':
base_path = os.path.join(weights_dir, 'realesr-general-x4v3.pth')
wdn_path = os.path.join(weights_dir, 'realesr-general-wdn-x4v3.pth')
model_path = [base_path, wdn_path]
denoise_strength = float(denoise_strength)
dni_weight = [1.0 - denoise_strength, denoise_strength] # base, WDN
else:
model_path = os.path.join(weights_dir, f"{model_name}.pth")
dni_weight = None
# ----- CUDA / precision / tiling -----
use_cuda = False
try:
import torch
use_cuda = torch.cuda.is_available()
except Exception:
use_cuda = False
gpu_id = 0 if use_cuda else None
upsampler = RealESRGANer(
scale=netscale,
model_path=model_path,
dni_weight=dni_weight,
model=model,
tile=256, # VRAM-safe default; lower to 128 if OOM
tile_pad=10,
pre_pad=10,
half=bool(use_cuda),
gpu_id=gpu_id
)
# ----- Optional face enhancement -----
face_enhancer = None
if face_enhance:
from gfpgan import GFPGANer
face_enhancer = GFPGANer(
model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
upscale=outscale,
arch='clean',
channel_multiplier=2,
bg_upsampler=upsampler
)
# ----- PIL -> cv2 -----
cv_img = numpy.array(img)
if cv_img.ndim == 3 and cv_img.shape[2] == 4:
cv_img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA)
else:
cv_img = cv2.cvtColor(cv_img, cv2.COLOR_RGB2BGR)
# ----- Enhance -----
try:
if face_enhancer:
_, _, output = face_enhancer.enhance(cv_img, has_aligned=False, only_center_face=False, paste_back=True)
else:
output, _ = upsampler.enhance(cv_img, outscale=int(outscale))
except RuntimeError as error:
print('Error', error)
print('Tip: If you hit CUDA OOM, try a smaller tile size (e.g., 128).')
return None
# ----- cv2 -> display ndarray, also save -----
if output.ndim == 3 and output.shape[2] == 4:
display_img = cv2.cvtColor(output, cv2.COLOR_BGRA2RGBA)
extension = 'png'
else:
display_img = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
extension = 'jpg'
out_filename = f"output_{rnd_string(8)}.{extension}"
try:
cv2.imwrite(out_filename, output)
global last_file
last_file = out_filename
except Exception as e:
print("Save error:", e)
return display_img
#Add a batch upscaler that preserves filenames
def render_progress(pct: float, text: str = "") -> str:
pct = max(0.0, min(100.0, float(pct)))
bar = f"<div style='width:100%;border:1px solid #ddd;border-radius:6px;overflow:hidden;height:12px;'><div style='height:100%;width:{pct:.1f}%;background:#3b82f6;'></div></div>"
label = f"<div style='font-size:12px;opacity:.8;margin-top:4px;'>{text} {pct:.1f}%</div>"
return bar + label
@GPU()
def batch_realesrgan(
files: list, # from gr.Files (type='filepath')
model_name: str,
denoise_strength: float,
face_enhance: bool,
outscale: int,
tile: int,
batch_size: int = 16,
):
"""
Processes multiple images in batches, preserves original file names for outputs,
and returns (gallery, zip_file, details, progress_html) with streamed progress.
"""
# Validate
if not files or len(files) == 0:
yield None, None, "No files uploaded.", render_progress(0, "Idle")
return
# Build upsampler once (much faster than per-image)
upsampler, netscale, use_cuda, model_path = get_upsampler(model_name, outscale, tile=tile)
# Optional: face enhancer (same as your single-image path)
face_enhancer = None
if face_enhance:
from gfpgan import GFPGANer
face_enhancer = GFPGANer(
model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
upscale=outscale,
arch='clean',
channel_multiplier=2,
bg_upsampler=upsampler
)
# Prepare work/output dirs
work = Path(tempfile.mkdtemp(prefix="batch_up_"))
out_dir = work / "upscaled"
out_dir.mkdir(parents=True, exist_ok=True)
# Normalize list of input paths
src_paths = [Path(f.name if hasattr(f, "name") else f) for f in files]
total = len(src_paths)
done = 0
out_paths = []
# If realesr-general-x4v3: support blending base + WDN via dni (optional)
dni_weight = None
if model_name == "realesr-general-x4v3":
# Blend [base, WDN] with user's slider
denoise_strength = float(denoise_strength)
dni_weight = [1.0 - denoise_strength, denoise_strength]
# RealESRGANer.enhance accepts dni_weight override via attribute on the instance
try:
upsampler.dni_weight = dni_weight
except Exception:
pass
# Process in batches (I/O and PIL open are still per-file)
for i in range(0, total, int(max(1, batch_size))):
batch = src_paths[i:i + int(max(1, batch_size))]
for src in batch:
try:
# Load as RGB consistently
from PIL import Image
with Image.open(src) as im:
img = im.convert("RGB")
arr = numpy.array(img)
arr = cv2.cvtColor(arr, cv2.COLOR_RGB2BGR)
if face_enhancer:
_, _, output = face_enhancer.enhance(arr, has_aligned=False, only_center_face=False, paste_back=True)
else:
output, _ = upsampler.enhance(arr, outscale=int(outscale))
# Preserve original file name & (reasonable) extension
orig_ext = src.suffix.lower()
ext = orig_ext if orig_ext in (".png", ".jpg", ".jpeg") else ".png"
out_path = out_dir / (src.stem + ext)
# Save (keep alpha if produced, else RGB)
if output.ndim == 3 and output.shape[2] == 4:
cv2.imwrite(str(out_path.with_suffix(".png")), output) # 4ch β PNG
out_path = out_path.with_suffix(".png")
else:
if ext in (".jpg", ".jpeg"):
cv2.imwrite(str(out_path), output, [int(cv2.IMWRITE_JPEG_QUALITY), 95])
else:
cv2.imwrite(str(out_path), output) # PNG default
out_paths.append(out_path)
except Exception as e:
# Continue on errors
print(f"[batch] Error on {src}: {e}")
finally:
done += 1
pct = (done / total) * 100.0 if total else 0.0
remaining = max(0, total - done)
msg = f"Upscaling⦠{done}/{total} done · {remaining} remaining (batch {(i//batch_size)+1}/{(total+batch_size-1)//batch_size})"
yield None, None, msg, render_progress(pct, msg)
if not out_paths:
yield None, None, "No outputs produced.", render_progress(100, "Finished")
return
# Small even-sampled gallery for preview
def _sample_even(seq, n=30):
if not seq: return []
if len(seq) <= n: return [str(p) for p in seq]
step = (len(seq)-1) / (n-1)
idxs = [round(i*step) for i in range(n)]
seen, out = set(), []
for i in idxs:
if i not in seen:
out.append(str(seq[int(i)])); seen.add(int(i))
return out
out_paths = sorted(out_paths) # stable
gallery = _sample_even(out_paths, 30)
# Zip with same file names
zip_path = work / "upscaled.zip"
with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_DEFLATED) as zf:
for p in out_paths:
zf.write(p, arcname=p.name)
details = f"Upscaled {len(out_paths)} images β {out_dir}"
yield gallery, str(zip_path), details, render_progress(100, "Complete")
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# UI
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# UI
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def main():
with gr.Blocks(title="Real-ESRGAN Gradio Demo", theme="ParityError/Interstellar") as demo:
gr.Markdown("## Image Upscaler")
with gr.Accordion("Upscaling options", open=True):
with gr.Row():
model_name = gr.Dropdown(
label="Upscaler model",
choices=[
"RealESRGAN_x4plus",
"RealESRNet_x4plus",
"RealESRGAN_x4plus_anime_6B",
"RealESRGAN_x2plus",
"realesr-general-x4v3",
],
value="RealESRGAN_x4plus",
show_label=True
)
denoise_strength = gr.Slider(
label="Denoise Strength (only for realesr-general-x4v3)",
minimum=0, maximum=1, step=0.1, value=0.5
)
outscale = gr.Slider(
label="Resolution upscale",
minimum=1, maximum=6, step=1, value=4, show_label=True
)
face_enhance = gr.Checkbox(label="Face Enhancement (GFPGAN)", value=False)
model_tips = gr.Markdown(model_tip_text("RealESRGAN_x4plus"))
with gr.Row():
with gr.Group():
input_image = gr.Image(label="Input Image", type="pil", image_mode="RGBA")
input_image_properties = gr.Textbox(label="Image Properties", max_lines=1)
output_image = gr.Image(label="Output Image", image_mode="RGBA")
with gr.Row():
reset_btn = gr.Button("Remove images")
restore_btn = gr.Button("Upscale")
input_image.change(fn=image_properties, inputs=input_image, outputs=input_image_properties)
model_name.change(fn=model_tip_text, inputs=model_name, outputs=model_tips)
restore_btn.click(
fn=realesrgan,
inputs=[input_image, model_name, denoise_strength, face_enhance, outscale],
outputs=output_image
)
reset_btn.click(fn=reset, inputs=[], outputs=[output_image, input_image])
# --- Batch Upscale (multi-image) ---
gr.Markdown("### Batch Upscale")
with gr.Accordion("Batch options", open=True):
with gr.Row():
batch_files = gr.Files(
label="Upload multiple images (PNG/JPG/JPEG)",
type="filepath",
file_types=[".png", ".jpg", ".jpeg"],
# file_count="multiple" # optional: explicit in some versions
)
with gr.Row():
batch_tile = gr.Number(label="Tile size (0/auto β 256)", value=256, precision=0)
batch_size = gr.Number(label="Batch size (images per batch)", value=16, precision=0)
with gr.Row():
batch_btn = gr.Button("Upscale Batch", variant="primary")
batch_prog = gr.HTML(render_progress(0.0, "Idle"))
batch_gallery = gr.Gallery(label="Preview (sampled 30)", columns=6, height=420)
batch_zip = gr.File(label="Download upscaled.zip")
batch_details = gr.Markdown("")
# Wire it up (generator β streaming)
batch_btn.click(
fn=batch_realesrgan,
inputs=[batch_files, model_name, denoise_strength, face_enhance, outscale, batch_tile, batch_size],
outputs=[batch_gallery, batch_zip, batch_details, batch_prog],
)
gr.Markdown("") # spacer
return demo
if __name__ == "__main__":
demo = main()
demo.queue().launch(ssr_mode=False) # set share=True if you want a public link |