Juna190825's picture
Update app.py
af90fa1 verified
import os
from openai import OpenAI
import streamlit as st
st.title("Trillion-7B-Preview")
client = OpenAI(
api_key=os.getenv("OPENROUTER_API_KEY"),
# api_key=os.getenv("OpenAI"),
# base_url=os.getenv("BASE_URL"),
# base_url=os.getenv("https://api.openai.com/v1"),
base_url=os.getenv("https://openrouter.ai/api/v1"),
)
if "openai_model" not in st.session_state:
# st.session_state["openai_model"] = "trillionlabs/Trillion-7B-preview"
st.session_state["openai_model"] = "deepseek/deepseek-chat-v3-0324:free"
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Message"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
stream = client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=True,
extra_body={
"topP": 0.95,
"maxTokens": 3072,
"temperature": 0.6,
},
)
response = st.write_stream(stream)
st.session_state.messages.append({"role": "assistant", "content": response})
# import os
# import torch
# import time
# import warnings
# from fastapi import FastAPI, Request
# from fastapi.responses import JSONResponse
# from fastapi.middleware.cors import CORSMiddleware
# import gradio as gr
# from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# # Suppress specific warnings
# warnings.filterwarnings("ignore", category=FutureWarning, module="transformers.utils.hub")
# # Configure environment variables for cache
# os.environ["HF_HOME"] = os.getenv("HF_HOME", "/app/cache/huggingface")
# os.environ["MPLCONFIGDIR"] = os.getenv("MPLCONFIGDIR", "/app/cache/matplotlib")
# # Ensure cache directories exist
# os.makedirs(os.environ["HF_HOME"], exist_ok=True)
# os.makedirs(os.environ["MPLCONFIGDIR"], exist_ok=True)
# # Initialize FastAPI app
# app = FastAPI()
# def log_message(message: str):
# """Helper function for logging"""
# print(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] {message}")
# def load_model():
# """Load the model with CPU optimization"""
# model_name = "trillionlabs/Trillion-7B-preview-AWQ"
# log_message("Loading tokenizer...")
# try:
# tokenizer = AutoTokenizer.from_pretrained(
# model_name,
# trust_remote_code=True
# )
# except Exception as e:
# log_message(f"Tokenizer loading failed: {e}")
# # Fallback to LlamaTokenizer if available
# from transformers import LlamaTokenizer
# tokenizer = LlamaTokenizer.from_pretrained(model_name)
# log_message("Loading model...")
# try:
# model = AutoModelForCausalLM.from_pretrained(
# model_name,
# torch_dtype=torch.float32,
# trust_remote_code=True
# )
# # Explicitly move to CPU
# model = model.to("cpu")
# model.eval()
# except Exception as e:
# log_message(f"Model loading failed: {e}")
# raise
# log_message("Creating pipeline...")
# text_generator = pipeline(
# "text-generation",
# model=model,
# tokenizer=tokenizer,
# device="cpu"
# )
# return text_generator, tokenizer
# # Load model
# try:
# log_message("Starting model loading process...")
# text_generator, tokenizer = load_model()
# log_message("Model loaded successfully")
# except Exception as e:
# log_message(f"Critical error loading model: {e}")
# raise
# # API endpoints
# @app.post("/api/generate")
# async def api_generate(request: Request):
# """API endpoint for text generation"""
# try:
# data = await request.json()
# prompt = data.get("prompt", "").strip()
# if not prompt:
# return JSONResponse({"error": "Prompt cannot be empty"}, status_code=400)
# max_length = min(int(data.get("max_length", 100)), 300) # Conservative limit
# start_time = time.time()
# outputs = text_generator(
# prompt,
# max_length=max_length,
# do_sample=True,
# temperature=0.7,
# top_k=50,
# top_p=0.95,
# pad_token_id=tokenizer.eos_token_id
# )
# generation_time = time.time() - start_time
# response_data = {
# "generated_text": outputs[0]["generated_text"],
# "time_seconds": round(generation_time, 2),
# "tokens_generated": len(tokenizer.tokenize(outputs[0]["generated_text"])),
# "model": "Trillion-7B-preview-AWQ",
# "device": "cpu"
# }
# return JSONResponse(response_data)
# except Exception as e:
# log_message(f"API Error: {e}")
# return JSONResponse({"error": str(e)}, status_code=500)
# @app.get("/health")
# async def health_check():
# """Health check endpoint"""
# return {
# "status": "healthy",
# "model_loaded": text_generator is not None,
# "device": "cpu",
# "cache_path": os.environ["HF_HOME"]
# }
# # Gradio Interface
# def gradio_generate(prompt, max_length=100):
# """Function for Gradio interface generation"""
# try:
# max_length = min(int(max_length), 300) # Same conservative limit as API
# if not prompt.strip():
# return "Please enter a prompt"
# outputs = text_generator(
# prompt,
# max_length=max_length,
# do_sample=True,
# temperature=0.7,
# top_k=50,
# top_p=0.95,
# pad_token_id=tokenizer.eos_token_id
# )
# return outputs[0]["generated_text"]
# except Exception as e:
# log_message(f"Gradio Error: {e}")
# return f"Error generating text: {str(e)}"
# with gr.Blocks(title="Trillion-7B CPU Demo", theme=gr.themes.Default()) as gradio_app:
# gr.Markdown("""
# # 🚀 Trillion-7B-preview-AWQ (CPU Version)
# *Running on CPU with optimized settings - responses may be slower than GPU versions*
# """)
# with gr.Row():
# with gr.Column():
# input_prompt = gr.Textbox(
# label="Your Prompt",
# placeholder="Enter text here...",
# lines=5,
# max_lines=10
# )
# with gr.Row():
# max_length = gr.Slider(
# label="Max Length",
# minimum=20,
# maximum=300,
# value=100,
# step=10
# )
# generate_btn = gr.Button("Generate", variant="primary")
# with gr.Column():
# output_text = gr.Textbox(
# label="Generated Text",
# lines=10,
# interactive=False
# )
# # Examples
# gr.Examples(
# examples=[
# ["Explain quantum computing in simple terms"],
# ["Write a haiku about artificial intelligence"],
# ["What are the main benefits of renewable energy?"],
# ["Suggest three ideas for a science fiction story"]
# ],
# inputs=input_prompt,
# label="Example Prompts"
# )
# generate_btn.click(
# fn=gradio_generate,
# inputs=[input_prompt, max_length],
# outputs=output_text
# )
# # Mount Gradio app
# app = gr.mount_gradio_app(app, gradio_app, path="/")
# # CORS configuration
# app.add_middleware(
# CORSMiddleware,
# allow_origins=["*"],
# allow_methods=["*"],
# allow_headers=["*"],
# )
# if __name__ == "__main__":
# import uvicorn
# uvicorn.run(app, host="0.0.0.0", port=7860)