Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,621 Bytes
3b57e92 d71fa96 3b57e92 df59904 3b57e92 1416f7f 154b20a 1416f7f 154b20a 3b57e92 154b20a 3b57e92 154b20a 3b57e92 154b20a 3b57e92 d71fa96 3b57e92 8401d0b 3b57e92 517b379 154b20a 517b379 154b20a 517b379 3b57e92 517b379 3b57e92 154b20a 3b57e92 6932478 3b57e92 154b20a 3f2ac01 3b57e92 6932478 3b57e92 154b20a 3b57e92 154b20a 3b57e92 154b20a 3b57e92 154b20a 3b57e92 154b20a 3f2ac01 154b20a 3b57e92 154b20a 3b57e92 aa34787 154b20a 3b57e92 fdedf25 154b20a fdedf25 154b20a fdedf25 3b57e92 154b20a 3b57e92 6932478 154b20a 3b57e92 154b20a 3b57e92 154b20a 3b57e92 154b20a 3b57e92 154b20a 3f2ac01 154b20a 3f2ac01 154b20a 79a0f65 154b20a 3b57e92 154b20a 3b57e92 154b20a 3b57e92 6932478 3b57e92 154b20a 3b57e92 6932478 3b57e92 154b20a 3f2ac01 3b57e92 64d98a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import os
import random
from functools import partial
if os.environ.get("IN_SPACES", None) is not None:
in_spaces = True
import spaces
else:
in_spaces = False
import gradio as gr
import torch
try:
# pre-import triton can avoid diffusers/transformers make import error
import triton
except ImportError:
print("Triton not found, skip pre import")
## HDM model dep
import xut.env
xut.env.TORCH_COMPILE = False
xut.env.USE_LIGER = False
xut.env.USE_VANILLA = False
xut.env.USE_XFORMERS = False
xut.env.USE_XFORMERS_LAYERS = False
from hdm.pipeline import HDMXUTPipeline
## TIPO
import kgen.models as kgen_models
import kgen.executor.tipo as tipo
from kgen.formatter import apply_format, seperate_tags
torch.set_float32_matmul_precision("high")
DEFAULT_FORMAT = """
<|special|>,
<|characters|>, <|copyrights|>,
<|artist|>,
<|general|>,
<|extended|>.
<|quality|>, <|meta|>, <|rating|>
""".strip()
def GPU(func=None, duration=None):
if func is None:
return partial(GPU, duration=duration)
if in_spaces:
if duration:
return spaces.GPU(func, duration=duration)
else:
return spaces.GPU(func)
else:
return func
def prompt_opt(tags, nl_prompt, aspect_ratio, seed):
meta, operations, general, nl_prompt = tipo.parse_tipo_request(
seperate_tags(tags.split(",")),
nl_prompt,
tag_length_target="long",
nl_length_target="short",
generate_extra_nl_prompt=True,
)
meta["aspect_ratio"] = f"{aspect_ratio:.3f}"
result, timing = tipo.tipo_runner(meta, operations, general, nl_prompt, seed=seed)
return apply_format(result, DEFAULT_FORMAT).strip().strip(".").strip(",")
print("Loading models, please wait...")
device = torch.device("cuda")
model = (
HDMXUTPipeline.from_pretrained(
"KBlueLeaf/HDM-xut-340M-anime",
trust_remote_code=True,
)
.to(torch.float16)
.to(device)
)
tipo_model_name, gguf_list = kgen_models.tipo_model_list[0]
kgen_models.load_model(tipo_model_name, device="cuda")
print("Models loaded successfully. UI is ready.")
@GPU(duration=10)
@torch.no_grad()
def generate(
nl_prompt: str,
tag_prompt: str,
negative_prompt: str,
tipo_enable: bool,
format_enable: bool,
num_images: int,
steps: int,
cfg_scale: float,
size: int,
aspect_ratio: str,
fixed_short_edge: bool,
zoom: float,
x_shift: float,
y_shift: float,
tread_gamma1: float,
tread_gamma2: float,
seed: int,
progress=gr.Progress(),
):
as_w, as_h = aspect_ratio.split(":")
aspect_ratio = float(as_w) / float(as_h)
# Set seed for reproducibility
if seed == -1:
seed = random.randint(0, 2**32 - 1)
torch.manual_seed(seed)
# TIPO
if tipo_enable:
tipo.BAN_TAGS = [i.strip() for i in negative_prompt.split(",") if i.strip()]
final_prompt = prompt_opt(tag_prompt, nl_prompt, aspect_ratio, seed)
elif format_enable:
final_prompt = apply_format(nl_prompt, DEFAULT_FORMAT)
else:
final_prompt = tag_prompt + "\n" + nl_prompt
yield None, final_prompt
prompts_to_generate = [final_prompt.replace("\n", " ")] * num_images
negative_prompts_to_generate = [negative_prompt] * num_images
if fixed_short_edge:
if aspect_ratio > 1:
h_factor = 1
w_factor = aspect_ratio
else:
h_factor = 1 / aspect_ratio
w_factor = 1
else:
w_factor = aspect_ratio**0.5
h_factor = 1 / w_factor
w = int(size * w_factor / 16) * 16
h = int(size * h_factor / 16) * 16
print("=" * 100)
print(
f"Generating {num_images} image(s) with seed: {seed} and resolution {w}x{h}"
)
print("-" * 80)
print(f"Final prompt: {final_prompt}")
print("-" * 80)
print(f"Negative prompt: {negative_prompt}")
print("-" * 80)
prompts_batch = prompts_to_generate
neg_prompts_batch = negative_prompts_to_generate
images = model(
prompts_batch,
neg_prompts_batch,
num_inference_steps=steps,
cfg_scale=cfg_scale,
width=w,
height=h,
camera_param={
"zoom": zoom,
"x_shift": x_shift,
"y_shift": y_shift,
},
tread_gamma1=tread_gamma1,
tread_gamma2=tread_gamma2,
).images
yield images, final_prompt
# --- Gradio UI Definition ---
with gr.Blocks(title="HDM Demo", theme=gr.themes.Soft()) as demo:
gr.Markdown("# HDM Demo")
gr.Markdown(
"### Enter a natural language prompt and/or specific tags to generate an image."
)
with gr.Accordion("Introduction", open=False):
gr.Markdown("""
# HDM: HomeDiffusion Model Project
HDM is a project to implement a series of generative model that can be pretrained at home.
* Project Source code: https://github.com/KBlueLeaf/HDM
* Model: https://huggingface.co/KBlueLeaf/HDM-xut-340M-anime
## Usage
This early model used a model trained on anime image set only,
so you should expect to see anime style images only in this demo.
For prompting, enter danbooru tag prompt to the box "Tag Prompt" with comma seperated and remove the underscore.
enter natural language prompt to the box "Natural Language Prompt" and enter negative prompt to the box "Negative Prompt".
If you don't want to spent so much effort on prompting, try to keep "Enable TIPO" selected.
If you don't want to apply any pre-defined format, unselect "Enable TIPO" and "Enable Format".
## Model Spec
- Backbone: 343M XUT(UViT modified) arch
- Text Encoder: Qwen3 0.6B (596M)
- VAE: EQ-SDXL-VAE, an EQ-VAE finetuned sdxl vae.
## Pretraining Dataset
- Danbooru 2023 (latest id around 8M)
- Pixiv famous artist set
- some pvc figure photos
""")
with gr.Row():
with gr.Column(scale=2):
nl_prompt_box = gr.Textbox(
label="Natural Language Prompt",
placeholder="e.g., A beautiful anime girl standing in a blooming cherry blossom forest",
lines=3,
)
tag_prompt_box = gr.Textbox(
label="Tag Prompt (comma-separated)",
placeholder="e.g., 1girl, solo, long hair, cherry blossoms, school uniform",
lines=3,
)
neg_prompt_box = gr.Textbox(
label="Negative Prompt",
value=(
"llow quality, worst quality, text, signature, jpeg artifacts, bad anatomy, old, early, copyright name, watermark, artist name, signature, weibo username, realistic"
),
lines=3,
)
with gr.Row():
tipo_enable = gr.Checkbox(
label="Enable TIPO",
value=True,
)
format_enable = gr.Checkbox(
label="Enable Format",
value=True,
)
with gr.Row():
zoom_slider = gr.Slider(
label="Zoom", minimum=0.5, maximum=2.0, value=1.0, step=0.01
)
x_shift_slider = gr.Slider(
label="X Shift", minimum=-0.5, maximum=0.5, value=0.0, step=0.01
)
y_shift_slider = gr.Slider(
label="Y Shift", minimum=-0.5, maximum=0.5, value=0.0, step=0.01
)
with gr.Column(scale=1):
with gr.Row():
num_images_slider = gr.Slider(
label="Number of Images", minimum=1, maximum=4, value=1, step=1
)
steps_slider = gr.Slider(
label="Inference Steps", minimum=1, maximum=50, value=24, step=1
)
with gr.Row():
cfg_slider = gr.Slider(
label="CFG Scale", minimum=1.0, maximum=7.0, value=4.0, step=0.1
)
seed_input = gr.Number(
label="Seed",
value=-1,
precision=0,
info="Set to -1 for a random seed.",
)
with gr.Row():
tread_gamma1_slider = gr.Slider(
label="Tread Gamma 1",
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.05,
interactive=True,
)
tread_gamma2_slider = gr.Slider(
label="Tread Gamma 2",
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.05,
interactive=True,
)
with gr.Row():
size_slider = gr.Slider(
label="Base Image Size",
minimum=768,
maximum=1280,
value=1024,
step=16,
)
with gr.Row():
aspect_ratio_box = gr.Textbox(
label="Ratio (W:H)",
value="1:1",
)
fixed_short_edge = gr.Checkbox(
label="Fixed Edge",
value=True,
)
with gr.Row():
with gr.Column(scale=1):
generate_button = gr.Button("Generate", variant="primary")
output_prompt = gr.TextArea(
label="Final Prompt",
show_label=True,
interactive=False,
lines=32,
max_lines=32,
)
with gr.Column(scale=2):
output_gallery = gr.Gallery(
label="Generated Images",
show_label=True,
elem_id="gallery",
columns=2,
rows=3,
height="800px",
)
generate_button.click(
fn=generate,
inputs=[
nl_prompt_box,
tag_prompt_box,
neg_prompt_box,
tipo_enable,
format_enable,
num_images_slider,
steps_slider,
cfg_slider,
size_slider,
aspect_ratio_box,
fixed_short_edge,
zoom_slider,
x_shift_slider,
y_shift_slider,
tread_gamma1_slider,
tread_gamma2_slider,
seed_input,
],
outputs=[output_gallery, output_prompt],
show_progress_on=output_gallery,
)
if __name__ == "__main__":
demo.launch()
|