Spaces:
Configuration error
Configuration error
| import argparse | |
| import pandas as pd | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.preprocessing import MinMaxScaler | |
| from sklearn.preprocessing import LabelEncoder | |
| import os | |
| def parse(csv_path): | |
| print(f"Location of the file: {csv_path}") | |
| # Step 1: Load the dataset | |
| # file_path = "dataset.csv" # Path to the original dataset | |
| data = pd.read_csv(csv_path) | |
| # Drop NA and duplicates | |
| data = data.dropna() | |
| data.to_csv('data/01 dropna.csv', index=False) | |
| data = data.drop_duplicates() | |
| data.to_csv('data/02 drop_duplicates.csv', index=False) | |
| # Step 2: Define the feature columns (X) and target column (y) | |
| # X = data[["name", "attendance percentage", "average sleep time", "average screen time"]] # Feature columns | |
| X = data[["DateTime","product","campaign_id","webpage_id","product_category_1","product_category_2","user_group_id","gender","age_level","user_depth","city_development_index","var_1"]] # Feature columns | |
| y = data["is_click"] # Target column | |
| # Extract datetime features | |
| X.loc[:,'DateTime'] = pd.to_datetime(X['DateTime'], errors='coerce') | |
| X = X.dropna(subset=['DateTime']) | |
| # print(X.columns) | |
| # print(X.iloc[:5,0]) | |
| # print(X.iloc[:5,0].dt.weekday) | |
| X.loc[:,'weekday'] = pd.to_numeric(pd.to_datetime(X['DateTime'], errors='coerce').dt.weekday, errors='coerce', downcast='integer') | |
| X.loc[:,'month'] = pd.to_numeric(pd.to_datetime(X['DateTime'], errors='coerce').dt.month, errors='coerce', downcast='integer') | |
| X.loc[:,"hour"] = pd.to_datetime(X['DateTime'], errors='coerce').dt.hour.values | |
| X = X.drop('DateTime', axis=1) | |
| # Product label to number | |
| le = LabelEncoder() | |
| X.loc[:,"product"] = le.fit_transform(X["product"]) | |
| # Gender label to number | |
| X['gender'] = X['gender'].map({'Female': 1, | |
| 'Male': 0, | |
| 'M': 0}) | |
| # Normalize numerical features | |
| scaler = MinMaxScaler() | |
| numerical_features = ['campaign_id','webpage_id','user_depth',"product_category_1","product_category_2","user_group_id", 'age_level',"user_depth", 'city_development_index', 'var_1'] | |
| X[numerical_features] = scaler.fit_transform(X[numerical_features]) | |
| data = pd.concat([X, y.to_frame(name="is_click")], axis=1) | |
| data.to_csv('data/03 normalize.csv', index=False) | |
| # Step 3: Split the dataset into training and testing sets | |
| X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
| # Step 4: Combine X and y back into dataframes for train and test | |
| train_data = pd.concat([X_train, y_train], axis=1) # Combine features and target for training data | |
| test_data = pd.concat([X_test, y_test], axis=1) # Combine features and target for testing data | |
| # Step 5: Create the 'data' folder if it doesn't exist | |
| output_folder = "data" | |
| os.makedirs(output_folder, exist_ok=True) | |
| # Step 6: Save the train and test sets as CSV files | |
| # train_file_path = os.path.join(output_folder, "train.csv") | |
| train_file_path = "data/train.csv" | |
| test_file_path = "data/test.csv" | |
| train_data.to_csv(train_file_path, index=False) | |
| test_data.to_csv(test_file_path, index=False) | |
| print(f"Train and test datasets saved in '{output_folder}' folder.") | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--csv-path", type=str) | |
| args = parser.parse_args() | |
| parse(args.csv_path) | |