File size: 16,110 Bytes
ace9173
 
cc8a5f7
ace9173
 
 
 
aaaf067
ace9173
 
f18fdea
aaaf067
 
 
 
 
ace9173
aaaf067
 
2c41737
 
 
 
9e1eacf
eeb3295
2c41737
 
 
 
 
62ce53f
 
 
 
 
 
 
 
 
aaaf067
 
 
 
 
 
 
 
 
 
 
ace9173
 
fb41543
ace9173
 
f18fdea
ace9173
748bbd2
fb41543
ace9173
62ce53f
 
fb41543
 
 
 
 
 
 
 
 
 
 
62ce53f
70207e5
 
fb41543
a44d21a
70207e5
 
 
a44d21a
70207e5
341d585
70207e5
 
 
 
 
 
 
1984a63
70207e5
 
 
 
 
 
 
 
cc8a5f7
ace9173
789fb80
 
 
 
 
 
 
fb41543
789fb80
 
 
ace9173
 
 
fb41543
ace9173
 
 
 
 
 
 
 
 
8a60ba7
fb41543
 
8a60ba7
 
 
 
 
 
 
 
 
 
fb41543
 
 
 
8a60ba7
 
fb41543
8a60ba7
 
 
9bdf6a2
8a60ba7
9bdf6a2
 
 
 
 
8a60ba7
 
9bdf6a2
 
 
 
8a60ba7
cc8a5f7
9bdf6a2
cc8a5f7
9bdf6a2
 
 
 
 
008ea35
8a60ba7
9bdf6a2
 
 
 
2afccfc
 
 
d938867
 
2afccfc
f203857
 
 
 
 
 
 
 
8a60ba7
f203857
ace9173
 
 
 
 
 
cc8a5f7
 
ace9173
ed5b647
ace9173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a44d21a
 
 
 
ace9173
 
 
 
 
 
 
 
a44d21a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ace9173
 
 
 
b2242b9
ace9173
 
 
 
 
 
c9fcfc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70207e5
789fb80
70207e5
ace9173
789fb80
 
ace9173
789fb80
ace9173
789fb80
ace9173
 
 
 
fb41543
97fd847
 
 
 
 
 
 
 
 
 
 
 
 
 
ace9173
 
 
789fb80
a44d21a
e39fb6e
ace9173
 
46b59da
ace9173
 
 
 
 
 
573386e
ace9173
 
 
 
1964650
 
ace9173
ed5b647
b2242b9
 
 
 
 
 
 
 
 
 
0f145b1
b2242b9
 
 
 
ace9173
 
 
2d1f86e
97fd847
ace9173
 
789fb80
ace9173
2d1f86e
 
42ca6a2
 
 
 
ace9173
2d1f86e
ace9173
 
 
 
ed5b647
a44d21a
ace9173
 
 
2d1f86e
ed5b647
f203857
ace9173
70207e5
 
ace9173
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import gradio as gr
import torch
import io
from PIL import Image
import numpy as np
import spaces  # Import spaces for ZeroGPU compatibility
import math
import re
from einops import rearrange
from mmengine.config import Config
from xtuner.registry import BUILDER 

import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt

from scripts.camera.cam_dataset import Cam_Generator
from scripts.camera.visualization.visualize_batch import make_perspective_figures

from huggingface_hub import snapshot_download
import os
local_path = snapshot_download(
    repo_id="KangLiao/Puffin",
    repo_type="model",       
    #filename="Puffin-Base.pth",         
    local_dir="checkpoints/",  
    local_dir_use_symlinks=False,     
    revision="main",                  
)

local_path_vae = snapshot_download(
    repo_id="wusize/Puffin",
    repo_type="model",       
    #filename="Puffin-Base.pth",         
    local_dir="checkpoints_vae/",  
    local_dir_use_symlinks=False,     
    revision="main",                  
)


NUM = r"[+-]?(?:\d+(?:\.\d+)?|\.\d+)(?:[eE][+-]?\d+)?"
CAM_PATTERN = re.compile(r"(?:camera parameters.*?:|roll.*?:)\s*("+NUM+r")\s*,\s*("+NUM+r")\s*,\s*("+NUM+r")", re.IGNORECASE|re.DOTALL)

def center_crop(image):
    w, h = image.size
    s = min(w, h)
    l = (w - s) // 2
    t = (h - s) // 2
    return image.crop((l, t, l + s, t + s))


##### load model
# base model
config = "configs/pipelines/stage_2_base.py"
config = Config.fromfile(config)
model = BUILDER.build(config.model).cuda().bfloat16().eval()
checkpoint_path = "checkpoints/Puffin-Base.pth"
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint, strict=False)

checkpoint_path_vae = "checkpoints_vae/vae.pth"
checkpoint_vae = torch.load(checkpoint_path_vae)
model.vae.load_state_dict(checkpoint_vae, strict=False)


# thinking model
config_thinking = "configs/pipelines/stage_3_thinking.py"
config_thinking = Config.fromfile(config_thinking)
model_think = BUILDER.build(config_thinking.model).cuda().bfloat16().eval()
checkpoint_path = "checkpoints/Puffin-Thinking.pth"
checkpoint = torch.load(checkpoint_path)
model_think.load_state_dict(checkpoint, strict=False)
model_think.vae.load_state_dict(checkpoint_vae, strict=False)

description = r"""
<b>Official Gradio demo</b> for <a href='https://kangliao929.github.io/projects/puffin/' target='_blank'><b>Thinking with Camera: A Unified Multimodal Model for Camera-Centric Understanding and Generation</b></a>.<br>
🔥 We make the first attempt to integrate camera geometry into a unified multimodal model, introducing a camera-centric framework (<b>Puffin</b>) to advance multimodal spatial intelligence.<br>
🖼️ Try to switch the task table and choose different prompts or images to get the generation or understanding results.<br>
"""

article = r"""<h3>
<b>If Puffin is helpful, please help to star the <a href='https://github.com/KangLiao929/Puffin' target='_blank'>Github Repo</a>. Thank you.</b></h3>
<hr>

📑 **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@article{liao2025puffin,
title={Thinking with Camera: A Unified Multimodal Model for Camera-Centric Understanding and Generation},
author={Liao, Kang and Wu, Size and Wu, Zhonghua and Jin, Linyi and Wang, Chao and Wang, Yikai and Wang, Fei and Li, Wei and Loy, Chen Change},
journal={arXiv preprint arXiv:2510.08673},
year={2025}
}
```
📧 **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>kang.liao@ntu.edu.sg</b>.
<br>
"""


import base64
with open("assets/Puffin.png", "rb") as f:
    img_bytes = f.read()
img_b64 = base64.b64encode(img_bytes).decode()

html_img = f'''
<div style="display:flex; justify-content:center; align-items:center; width:100%;">
    <img src="data:image/png;base64,{img_b64}" style="border:none; width:150px; height:auto;"/>
</div>
'''

@torch.inference_mode()
@spaces.GPU(duration=120) 
# Multimodal Understanding function
def camera_understanding(image_src, thinking_und, question, seed, progress=gr.Progress(track_tqdm=True)):
    # Clear CUDA cache before generating
    torch.cuda.empty_cache()
    
    # set seed
    # torch.manual_seed(seed)
    # np.random.seed(seed)
    # torch.cuda.manual_seed(seed)
    print(torch.cuda.is_available())

    prompt = ("Describe the image in detail. Then reason its spatial distribution and estimate its camera parameters (roll, pitch, and field-of-view).")
    if thinking_und:
        prompt = ("Reason the spatial distribution of this image in a thinking mode, and then estimate its camera parameters (roll, pitch, and field-of-view).")

    image = Image.fromarray(image_src).convert('RGB')
    image = center_crop(image)
    image = image.resize((512, 512))
    x = torch.from_numpy(np.array(image)).float()
    x = x / 255.0
    x = 2 * x - 1
    x = rearrange(x, 'h w c -> c h w')

    with torch.no_grad():
        if thinking_und:
            outputs = model_think.understand(prompt=[prompt], pixel_values=[x], progress_bar=False)
        else:
            outputs = model.understand(prompt=[prompt], pixel_values=[x], progress_bar=False)

    text = outputs[0]
    gen = Cam_Generator(mode="cot") if thinking_und else Cam_Generator(mode="base")
    cam = gen.get_cam(text)
    
    bgr = np.array(image)[:, :, ::-1].astype(np.float32) / 255.0
    rgb = bgr[:, :, ::-1].copy()        
    image_tensor = torch.from_numpy(rgb).permute(2, 0, 1).unsqueeze(0)
    single_batch = {
        "image": image_tensor,
        "up_field": cam[:2].unsqueeze(0),
        "latitude_field": cam[2:].unsqueeze(0),
    }

    figs = make_perspective_figures(single_batch, single_batch, n_pairs=1)
    saved_paths = []
    save_dir = "temp/"
    os.makedirs(save_dir, exist_ok=True)
    
    for k, fig in figs.items():
        if "up_field" in k:
            suffix = "_up"
        elif "latitude_field" in k:
            suffix = "_lat"
        else:
            suffix = f"_{k}"
        out_path = os.path.join(save_dir, f"camera_map_vis{suffix}.png")
        plt.tight_layout()
        fig.savefig(out_path, dpi=200, bbox_inches='tight', pad_inches=0)
        plt.close(fig)
        saved_paths.append(out_path)

    img_up = Image.open(saved_paths[0]).convert("RGB")
    img_lat = Image.open(saved_paths[1]).convert("RGB")
    w, h = img_up.size
    left = max(0, w - h)
    img_up = img_up.crop((left, 0, w, h))
    w, h = img_lat.size
    left = max(0, w - h)
    img_lat = img_lat.crop((left, 0, w, h))
    img_up = img_up.resize((512, 512))
    img_lat = img_lat.resize((512, 512))
    
    gap = 10
    W, H = img_up.size
    combined = Image.new("RGB", (W * 2 + gap, H), (255, 255, 255))
    combined.paste(img_up, (0, 0))
    combined.paste(img_lat, (W + gap, 0))

    return text, combined


@torch.inference_mode()
@spaces.GPU(duration=120)  # Specify a duration to avoid timeout
def generate_image(prompt_scene,
                   seed=42,
                   roll=0.1,
                   pitch=0.1,
                   fov=1.0,
                   thinking_gen=False,
                   progress=gr.Progress(track_tqdm=True)):
    # Clear CUDA cache and avoid tracking gradients
    torch.cuda.empty_cache()
    # Set the seed for reproducible results
    # if seed is not None:
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    np.random.seed(seed)
    print(torch.cuda.is_available())
    
    generator = torch.Generator().manual_seed(seed)
    prompt_camera = (
        "The camera parameters (roll, pitch, and field-of-view) are: "
        f"{roll:.4f}, {pitch:.4f}, {fov:.4f}."
    )
    
    prompt_thinking = ("Given a scene description and corresponding camera parameters, "
                       "merge them into a coherent prompt and generate an accurate visualization "
                       "that highlights visual cues for spatial reasoning.")
    gen = Cam_Generator()
    cam_map = gen.get_cam(prompt_camera).to(model.device)
    cam_map = cam_map / (math.pi / 2)
    
    prompt = prompt_scene + " " + prompt_camera
    
    bsz = 4
    with torch.no_grad():
        if thinking_gen:
            images, output_reasoning = model_think.generate(
                prompt=[prompt]*bsz,
                cfg_prompt=[""]*bsz,
                pixel_values_init=None,
                cfg_scale=4.5,
                num_steps=50,
                cam_values=[[cam_map]]*bsz,
                progress_bar=False,
                reasoning=thinking_gen,
                prompt_reasoning=[prompt_thinking]*bsz,
                generator=generator,
                height=512,
                width=512
            )
        else:
            images, output_reasoning = model.generate(
                prompt=[prompt]*bsz,
                cfg_prompt=[""]*bsz,
                pixel_values_init=None,
                cfg_scale=4.5,
                num_steps=50,
                cam_values=[[cam_map]]*bsz,
                progress_bar=False,
                reasoning=thinking_gen,
                prompt_reasoning=[prompt_thinking]*bsz,
                generator=generator,
                height=512,
                width=512
            )

        images = rearrange(images, 'b c h w -> b h w c')
        images = torch.clamp(127.5 * images + 128.0, 0, 255).to("cpu", dtype=torch.uint8).numpy()
        ret_images = [Image.fromarray(image) for image in images]
        return ret_images, output_reasoning[0]


# Gradio interface
css = '''
.gradio-container {max-width: 960px !important}
'''

custom_css = """
#input-image {
    aspect-ratio: 1 / 1;
    width: 100%;
    max-width: 100%;
    height: auto;
    display: flex;
    align-items: center;
    justify-content: center;
}
#input-image img {
    max-width: 100%;
    max-height: 100%;
    object-fit: contain;
    display: block;
}
#main-columns {
    gap: 60px; 
}
#main-columns > .gr-column {
    flex: 1; 
}
#compare-image {
    width: 100%;
    aspect-ratio: 1 / 1; 
    display: flex;
    align-items: center;
    justify-content: center;
    margin: 0;
    padding: 0;
    max-width: 100%;
    box-sizing: border-box;
}
#compare-image svg.svelte-zyxd38 {
    position: absolute !important; 
    top: 50% !important;           
    left: 50% !important;          
    transform: translate(-50%, -50%) !important; 
}
#compare-image .icon.svelte-1oiin9d {
    position: absolute;
    top: 50%;
    left: 50%;
    transform: translate(-50%, -50%);
}
#compare-image {
    position: relative;
    overflow: hidden;
}
.new_button {background-color: #171717 !important; color: #ffffff !important; border: none !important;}
.new_button:hover {background-color: #4b4b4b !important;}
#start-button {
    background: linear-gradient(135deg, #2575fc 0%, #6a11cb 100%);
    color: white;
    border: none;
    padding: 12px 24px;
    font-size: 16px;
    font-weight: bold;
    border-radius: 12px;
    cursor: pointer;
    box-shadow: 0 0 12px rgba(100, 100, 255, 0.7);
    transition: all 0.3s ease;
}
#start-button:hover {
    transform: scale(1.05);
    box-shadow: 0 0 20px rgba(100, 100, 255, 1);
}
<style>
.button-wrapper {
    width: 30%;
    text-align: center; 
}
.wide-button {
    width: 83% !important;
    background-color: black !important;
    color: white !important;
    border: none !important;
    padding: 8px 0 !important;
    font-size: 16px !important;
    display: inline-block;
    margin: 30px 0px 0px 50px ;
}
.wide-button:hover {
    background-color: #656262 !important;
}
</style>
"""

with gr.Blocks(css=custom_css) as demo:
    #gr.Markdown("# Puffin")
    gr.HTML(html_img)
    gr.Markdown(description)

    with gr.Tab("Camera-controllable Generation"):
        gr.Markdown(value="## Camera-controllable Generation")

        prompt_input = gr.Textbox(label="Scene prompt")

        with gr.Accordion("Camera parameters (in radius)", open=True):
            with gr.Row():
                roll = gr.Slider(minimum=-0.7854, maximum=0.7854, value=0.1000, step=0.1000, label="roll value")
                pitch = gr.Slider(minimum=-0.7854, maximum=0.7854, value=-0.1000, step=0.1000, label="pitch value")
                fov = gr.Slider(minimum=0.3491, maximum=1.8326, value=1.5000, step=0.1000, label="fov value")
        with gr.Accordion("Settings", open=True):
            with gr.Row(equal_height=True):
                thinking_gen = gr.Radio(
                    ["Thinking"],
                    label=None,
                    value=None,
                    show_label=False,
                    interactive=True
                )

                seed_input = gr.Number(
                    label="Seed (Optional)",
                    precision=0,
                    value=42
                )
            
        generation_button = gr.Button("Generate Images")
    
        image_output = gr.Gallery(label="Generated images", columns=4, rows=1)
        
        output_reasoning = gr.Textbox(label="Response (only in thinking)")
    
        examples_t2i = gr.Examples(
            label="Prompt examples",
            examples=[
                "A sunny day casts light on two warmly colored buildings—yellow with green accents and deeper orange—framed by a lush green tree, with a blue sign and street lamp adding details in the foreground.",
                "A high-vantage-point view of lush, autumn-colored mountains blanketed in green and gold, set against a clear blue sky with scattered white clouds, offering a tranquil and breathtaking vista of a serene valley below.",
                "A grand, historic castle with pointed spires and elaborate stone structures stands against a clear blue sky, flanked by a circular fountain, vibrant red flowers, and neatly trimmed hedges in a beautifully landscaped garden.",
                "A serene aerial view of a coastal landscape at sunrise/sunset, featuring warm pink and orange skies transitioning to cool blues, with calm waters stretching to rugged, snow-capped mountains in the background, creating a tranquil and picturesque scene.",
                "A worn, light-yellow walls room with herringbone terracotta floors and three large arched windows framed in pink trim and white panes, showcasing signs of age and disrepair, overlooks a residential area through glimpses of greenery and neighboring buildings.",
                "The Milky Way rises above a remote bay near the grassy shores of Iceland, its silvery arc mirrored in the still, glassy waters below."
            ],
            inputs=prompt_input,
        )

    with gr.Tab("Camera Understanding"):
        gr.Markdown(value="## Camera Understanding")
        image_input = gr.Image()
        
        with gr.Accordion("Settings", open=True):            
            with gr.Row(equal_height=True):
                thinking_und = gr.Radio(
                    ["Thinking"],
                    label=None,
                    value=None,
                    show_label=False,
                    interactive=True
                )

                und_seed_input = gr.Number(
                    label="Seed (Optional)",
                    precision=0,
                    value=42
                )

        understanding_button = gr.Button("Chat")
        understanding_output = gr.Textbox(label="Response")
        
        camera_map = gr.Image(label="Camera maps (up vector & latitude)")

        examples_inpainting = gr.Examples(
            label="Examples",
            examples=[
                "assets/1.jpg",
                "assets/2.jpg",
                "assets/3.jpg",
                "assets/4.jpg",
                "assets/5.jpg",
                "assets/6.jpg",
            ],
            inputs=image_input,
        )

    generation_button.click(
        fn=generate_image,
        inputs=[prompt_input, seed_input, roll, pitch, fov, thinking_gen],
        outputs=[image_output, output_reasoning]
    )

    understanding_button.click(
        camera_understanding,
        inputs=[image_input, thinking_und, und_seed_input],
        outputs=[understanding_output, camera_map]
    )
    
    gr.Markdown(article)

demo.launch(share=True)