File size: 14,890 Bytes
d78d0d1
89be9f9
5fc4e72
9ccfeb4
cf79aee
89be9f9
1ef81e0
eac7d3f
89be9f9
7233b48
9ccfeb4
7932f13
9ccfeb4
 
7932f13
9ccfeb4
7233b48
 
 
 
 
 
 
 
 
 
 
 
 
d78d0d1
7233b48
 
f311bf4
 
 
7233b48
 
5b03846
 
 
0178c63
5b03846
7233b48
89be9f9
e38af10
 
 
 
 
 
a2591b6
5b03846
d78d0d1
 
 
 
 
 
 
9ccfeb4
d78d0d1
9ccfeb4
d78d0d1
 
 
 
 
 
9ccfeb4
 
5b03846
 
d78d0d1
 
 
 
eac7d3f
 
34274e5
 
eac7d3f
34274e5
eac7d3f
 
457a981
 
34274e5
 
 
 
 
eac7d3f
 
 
 
 
 
 
 
 
 
f311bf4
eac7d3f
 
 
 
 
 
 
 
 
 
1e16292
eac7d3f
 
 
457a981
 
 
eac7d3f
 
457a981
 
89be9f9
 
e78fda7
9ccfeb4
 
 
e78fda7
da98162
 
e78fda7
da98162
 
e78fda7
da98162
 
 
 
 
e78fda7
da98162
 
 
 
e78fda7
da98162
 
 
 
 
 
 
 
 
 
 
 
 
 
cf79aee
 
2e86d75
47e7aeb
9ccfeb4
 
 
47e7aeb
9ccfeb4
 
59874d6
9ccfeb4
 
 
 
 
 
 
 
814d067
9ccfeb4
 
 
79e1e8e
2e86d75
 
9ccfeb4
814d067
 
 
 
9ccfeb4
 
79e1e8e
9ccfeb4
 
 
 
 
 
 
 
 
2e86d75
de06d10
 
d78d0d1
1ef81e0
 
79e1e8e
1ef81e0
 
 
 
f57c1f6
d78d0d1
1ef81e0
f311bf4
 
1ef81e0
f311bf4
9ccfeb4
1ef81e0
73c24bb
f311bf4
 
 
 
 
 
7932f13
 
 
 
 
 
f311bf4
 
 
 
7932f13
 
f311bf4
7932f13
 
 
 
 
f311bf4
7932f13
 
 
f311bf4
 
 
1ef81e0
 
79e1e8e
 
 
2e86d75
 
1ef81e0
 
f57c1f6
1ef81e0
 
de06d10
350befe
 
de06d10
7932f13
de06d10
7932f13
 
de06d10
7932f13
 
de06d10
4da7dd2
 
 
7932f13
de06d10
 
2e86d75
814d067
de06d10
 
 
 
 
 
 
9ccfeb4
2e86d75
1ef81e0
9ccfeb4
e43faaa
9ccfeb4
5b03846
03279e4
9ccfeb4
5b03846
9ccfeb4
5b03846
 
9ccfeb4
 
 
 
 
a2591b6
2e86d75
99a0d01
 
 
9ccfeb4
a2591b6
9ccfeb4
4e66e6b
4da7dd2
4e66e6b
 
 
 
f57c1f6
 
79e1e8e
a2591b6
f57c1f6
 
 
ecb653b
 
 
 
 
 
 
 
 
 
 
9ccfeb4
 
ecb653b
 
 
 
 
 
 
 
 
 
 
 
79e1e8e
ecb653b
 
 
fda1178
ecb653b
f311bf4
ecb653b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import argparse
import os
import gzip
import pickle
import numpy as np
import pandas as pd
import tensorflow as tf
from Bio import SeqIO

# column names
ID_COL = 'Transcript ID'
SEQ_COL = 'Transcript Sequence'
TARGET_COL = 'Target Sequence'
GUIDE_COL = 'Guide Sequence'
MM_COL = 'Number of Mismatches'
SCORE_COL = 'Guide Score'

# nucleotide tokens
NUCLEOTIDE_TOKENS = dict(zip(['A', 'C', 'G', 'T', 'N'], [0, 1, 2, 3, 255]))
NUCLEOTIDE_COMPLEMENT = dict(zip(['A', 'C', 'G', 'T'], ['T', 'G', 'C', 'A']))

# model hyper-parameters
GUIDE_LEN = 23
CONTEXT_5P = 3
CONTEXT_3P = 0
TARGET_LEN = CONTEXT_5P + GUIDE_LEN + CONTEXT_3P
UNIT_INTERVAL_MAP = 'exp-lin-exp'

# reference transcript files
REFERENCE_TRANSCRIPTS = ('gencode.v19.pc_transcripts.fa.gz', 'gencode.v19.lncRNA_transcripts.fa.gz')

# application configuration
BATCH_SIZE_COMPUTE = 500
BATCH_SIZE_SCAN = 20
BATCH_SIZE_TRANSCRIPTS = 50
NUM_TOP_GUIDES = 10
NUM_MISMATCHES = 3
RUN_MODES = dict(
    all='All on-target guides per transcript',
    top_guides='Top {:d} guides per transcript'.format(NUM_TOP_GUIDES),
    # titration='Top {:d} guides per transcript & their titration candidates'.format(NUM_TOP_GUIDES)  # TODO: do this!
)


# configure GPUs
for gpu in tf.config.list_physical_devices('GPU'):
    tf.config.experimental.set_memory_growth(gpu, enable=True)
if len(tf.config.list_physical_devices('GPU')) > 0:
    tf.config.experimental.set_visible_devices(tf.config.list_physical_devices('GPU')[0], 'GPU')


def load_transcripts(fasta_files: list, enforce_unique_ids: bool = True):

    # load all transcripts from fasta files into a DataFrame
    transcripts = pd.DataFrame()
    for file in fasta_files:
        try:
            if os.path.splitext(file)[1] == '.gz':
                with gzip.open(file, 'rt') as f:
                    df = pd.DataFrame([(t.id, str(t.seq)) for t in SeqIO.parse(f, 'fasta')], columns=[ID_COL, SEQ_COL])
            else:
                df = pd.DataFrame([(t.id, str(t.seq)) for t in SeqIO.parse(file, 'fasta')], columns=[ID_COL, SEQ_COL])
        except Exception as e:
            print(e, 'while loading', file)
            continue
        transcripts = pd.concat([transcripts, df])

    # set index
    transcripts[ID_COL] = transcripts[ID_COL].apply(lambda s: s.split('|')[0])
    transcripts.set_index(ID_COL, inplace=True)
    if enforce_unique_ids:
        assert not transcripts.index.has_duplicates, "duplicate transcript ID's detected in fasta file"

    return transcripts


def sequence_complement(sequence: list):
    return [''.join([NUCLEOTIDE_COMPLEMENT[nt] for nt in list(seq)]) for seq in sequence]


def one_hot_encode_sequence(sequence: list, add_context_padding: bool = False):

    # stack list of sequences into a tensor
    sequence = tf.ragged.stack([tf.constant(list(seq)) for seq in sequence], axis=0)

    # tokenize sequence
    nucleotide_table = tf.lookup.StaticVocabularyTable(
        initializer=tf.lookup.KeyValueTensorInitializer(
            keys=tf.constant(list(NUCLEOTIDE_TOKENS.keys()), dtype=tf.string),
            values=tf.constant(list(NUCLEOTIDE_TOKENS.values()), dtype=tf.int64)),
        num_oov_buckets=1)
    sequence = tf.RaggedTensor.from_row_splits(values=nucleotide_table.lookup(sequence.values),
                                               row_splits=sequence.row_splits).to_tensor(255)

    # add context padding if requested
    if add_context_padding:
        pad_5p = 255 * tf.ones([sequence.shape[0], CONTEXT_5P], dtype=sequence.dtype)
        pad_3p = 255 * tf.ones([sequence.shape[0], CONTEXT_3P], dtype=sequence.dtype)
        sequence = tf.concat([pad_5p, sequence, pad_3p], axis=1)

    # one-hot encode
    sequence = tf.one_hot(sequence, depth=4, dtype=tf.float16)

    return sequence


def process_data(transcript_seq: str):

    # convert to upper case
    transcript_seq = transcript_seq.upper()

    # get all target sites
    target_seq = [transcript_seq[i: i + TARGET_LEN] for i in range(len(transcript_seq) - TARGET_LEN + 1)]

    # prepare guide sequences
    guide_seq = sequence_complement([seq[CONTEXT_5P:len(seq) - CONTEXT_3P] for seq in target_seq])

    # model inputs
    model_inputs = tf.concat([
        tf.reshape(one_hot_encode_sequence(target_seq, add_context_padding=False), [len(target_seq), -1]),
        tf.reshape(one_hot_encode_sequence(guide_seq, add_context_padding=True), [len(guide_seq), -1]),
        ], axis=-1)
    return target_seq, guide_seq, model_inputs


def prediction_transform(predictions: np.array, **params):
    if len(params) == 0:
        with open('transform_params.pkl', 'rb') as f:
            params = pickle.load(f)

    if UNIT_INTERVAL_MAP == 'sigmoid':
        return 1 - 1 / (1 + np.exp(params['a'] * predictions + params['b']))

    elif UNIT_INTERVAL_MAP == 'min-max':
        return 1 - (predictions - params['a']) / (params['b'] - params['a'])

    elif UNIT_INTERVAL_MAP == 'exp-lin-exp':
        # regime indices
        active_saturation = predictions < params['a']
        linear_regime = (params['a'] <= predictions) & (predictions <= params['c'])
        inactive_saturation = params['c'] < predictions

        # linear regime
        slope = (params['d'] - params['b']) / (params['c'] - params['a'])
        intercept = -params['a'] * slope + params['b']
        predictions[linear_regime] = slope * predictions[linear_regime] + intercept

        # active saturation regime
        alpha = slope / params['b']
        beta = alpha * params['a'] - np.log(params['b'])
        predictions[active_saturation] = np.exp(alpha * predictions[active_saturation] - beta)

        # inactive saturation regime
        alpha = slope / (1 - params['d'])
        beta = -alpha * params['c'] - np.log(1 - params['d'])
        predictions[inactive_saturation] = 1 - np.exp(-alpha * predictions[inactive_saturation] - beta)

        return 1 - predictions

    else:
        raise NotImplementedError


def get_on_target_predictions(transcripts: pd.DataFrame, model: tf.keras.Model, status_update_fn=None):

    # loop over transcripts
    predictions = pd.DataFrame()
    for i, (index, row) in enumerate(transcripts.iterrows()):

        # parse transcript sequence
        target_seq, guide_seq, model_inputs = process_data(row[SEQ_COL])

        # get predictions
        lfc_estimate = model.predict(model_inputs, batch_size=BATCH_SIZE_COMPUTE, verbose=False)
        scores = prediction_transform(tf.squeeze(lfc_estimate).numpy())
        predictions = pd.concat([predictions, pd.DataFrame({
            ID_COL: [index] * len(scores),
            TARGET_COL: [seq[CONTEXT_5P:len(seq) - CONTEXT_3P] for seq in target_seq],
            GUIDE_COL: guide_seq,
            SCORE_COL: scores})])

        # progress update
        percent_complete = 100 * min((i + 1) / len(transcripts), 1)
        update_text = 'Evaluating on-target guides for each transcript: {:.2f}%'.format(percent_complete)
        print('\r' + update_text, end='')
        if status_update_fn is not None:
            status_update_fn(update_text, percent_complete)
    print('')

    return predictions


def top_guides_per_transcript(predictions: pd.DataFrame):

    # select and sort top guides for each transcript
    top_guides = pd.DataFrame()
    for transcript in predictions[ID_COL].unique():
        df = predictions.loc[predictions[ID_COL] == transcript]
        df = df.sort_values(SCORE_COL, ascending=False).reset_index(drop=True).iloc[:NUM_TOP_GUIDES]
        top_guides = pd.concat([top_guides, df])

    return top_guides.reset_index(drop=True)


def find_off_targets(top_guides: pd.DataFrame, status_update_fn=None):

    # load reference transcripts
    reference_transcripts = load_transcripts([os.path.join('transcripts', f) for f in REFERENCE_TRANSCRIPTS])

    # one-hot encode guides to form a filter
    guide_filter = one_hot_encode_sequence(sequence_complement(top_guides[GUIDE_COL]), add_context_padding=False)
    guide_filter = tf.transpose(guide_filter, [1, 2, 0])

    # loop over transcripts in batches
    i = 0
    off_targets = pd.DataFrame()
    while i < len(reference_transcripts):
        # select batch
        df_batch = reference_transcripts.iloc[i:min(i + BATCH_SIZE_SCAN, len(reference_transcripts))]
        i += BATCH_SIZE_SCAN

        # find locations of off-targets
        transcripts = one_hot_encode_sequence(df_batch[SEQ_COL].values.tolist(), add_context_padding=False)
        num_mismatches = GUIDE_LEN - tf.nn.conv1d(transcripts, guide_filter, stride=1, padding='SAME')
        loc_off_targets = tf.where(tf.round(num_mismatches) <= NUM_MISMATCHES).numpy()

        # off-targets discovered
        if len(loc_off_targets) > 0:

            # log off-targets
            dict_off_targets = pd.DataFrame({
                'On-target ' + ID_COL: top_guides.iloc[loc_off_targets[:, 2]][ID_COL],
                GUIDE_COL: top_guides.iloc[loc_off_targets[:, 2]][GUIDE_COL],
                'Off-target ' + ID_COL: df_batch.index.values[loc_off_targets[:, 0]],
                'Guide Midpoint': loc_off_targets[:, 1],
                SEQ_COL: df_batch[SEQ_COL].values[loc_off_targets[:, 0]],
                MM_COL: tf.gather_nd(num_mismatches, loc_off_targets).numpy().astype(int),
            }).to_dict('records')

            # trim transcripts to targets
            for row in dict_off_targets:
                start_location = row['Guide Midpoint'] - (GUIDE_LEN // 2)
                del row['Guide Midpoint']
                if start_location < CONTEXT_5P:
                    row[SEQ_COL] = row[SEQ_COL][0:GUIDE_LEN + CONTEXT_3P]
                    row[SEQ_COL] = 'N' * (TARGET_LEN - len(row[SEQ_COL])) + row[SEQ_COL]
                elif start_location + GUIDE_LEN + CONTEXT_3P > len(row[SEQ_COL]):
                    row[SEQ_COL] = row[SEQ_COL][start_location - CONTEXT_5P:]
                    row[SEQ_COL] = row[SEQ_COL] + 'N' * (TARGET_LEN - len(row[SEQ_COL]))
                else:
                    row[SEQ_COL] = row[SEQ_COL][start_location - CONTEXT_5P:start_location + GUIDE_LEN + CONTEXT_3P]
                if row[MM_COL] == 0 and 'N' not in row[SEQ_COL]:
                    assert row[GUIDE_COL] == sequence_complement([row[SEQ_COL][CONTEXT_5P:TARGET_LEN - CONTEXT_3P]])[0]

            # append new off-targets
            off_targets = pd.concat([off_targets, pd.DataFrame(dict_off_targets)])

        # progress update
        percent_complete = 100 * min((i + 1) / len(reference_transcripts), 1)
        update_text = 'Scanning for off-targets: {:.2f}%'.format(percent_complete)
        print('\r' + update_text, end='')
        if status_update_fn is not None:
            status_update_fn(update_text, percent_complete)
    print('')

    return off_targets


def predict_off_target(off_targets: pd.DataFrame, model: tf.keras.Model):
    if len(off_targets) == 0:
        return pd.DataFrame()

    # compute off-target predictions
    model_inputs = tf.concat([
        tf.reshape(one_hot_encode_sequence(off_targets[SEQ_COL], add_context_padding=False), [len(off_targets), -1]),
        tf.reshape(one_hot_encode_sequence(off_targets[GUIDE_COL], add_context_padding=True), [len(off_targets), -1]),
        ], axis=-1)
    lfc_estimate = model.predict(model_inputs, batch_size=BATCH_SIZE_COMPUTE, verbose=False)
    off_targets[SCORE_COL] = prediction_transform(tf.squeeze(lfc_estimate).numpy())

    # trim context sequence
    off_targets[SEQ_COL] = off_targets[SEQ_COL].apply(lambda seq: seq[CONTEXT_5P:len(seq) - CONTEXT_3P])

    return off_targets.sort_values(SCORE_COL, ascending=False).reset_index(drop=True)


def tiger_exhibit(transcripts: pd.DataFrame, mode: str, check_off_targets: bool, status_update_fn=None):

    # load model
    if os.path.exists('model'):
        tiger = tf.keras.models.load_model('model')
    else:
        print('no saved model!')
        exit()

    # evaluate all on-target guides per transcript
    on_target_predictions = get_on_target_predictions(transcripts, tiger, status_update_fn)

    # initialize other outputs
    off_target_predictions = None

    if mode == 'all' and not check_off_targets:
        pass  # nothing to do!

    elif mode == 'top_guides':
        on_target_predictions = top_guides_per_transcript(on_target_predictions)

    # TODO: add titration candidates

    else:
        raise NotImplementedError

    # check off-target effects for top guides
    if check_off_targets:
        off_targets = find_off_targets(on_target_predictions, status_update_fn)
        off_target_predictions = predict_off_target(off_targets, model=tiger)

    # reverse guide sequences
    on_target_predictions[GUIDE_COL] = on_target_predictions[GUIDE_COL].apply(lambda s: s[::-1])
    if check_off_targets and len(off_target_predictions) > 0:
        off_target_predictions[GUIDE_COL] = off_target_predictions[GUIDE_COL].apply(lambda s: s[::-1])

    return on_target_predictions, off_target_predictions


if __name__ == '__main__':

    # common arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('--mode', type=str, default='titration')
    parser.add_argument('--check_off_targets', action='store_true', default=False)
    parser.add_argument('--fasta_path', type=str, default=None)
    args = parser.parse_args()

    # check for any existing results
    if os.path.exists('on_target.csv') or os.path.exists('off_target.csv'):
        raise FileExistsError('please rename or delete existing results')

    # load transcripts from a directory of fasta files
    if args.fasta_path is not None and os.path.exists(args.fasta_path):
        df_transcripts = load_transcripts([os.path.join(args.fasta_path, f) for f in os.listdir(args.fasta_path)])

    # otherwise consider simple test case with first 50 nucleotides from EIF3B-003's CDS
    else:
        df_transcripts = pd.DataFrame({
            ID_COL: ['ManualEntry'],
            SEQ_COL: ['ATGCAGGACGCGGAGAACGTGGCGGTGCCCGAGGCGGCCGAGGAGCGCGC']})
        df_transcripts.set_index(ID_COL, inplace=True)

    # process in batches
    batch = 0
    num_batches = len(df_transcripts) // BATCH_SIZE_TRANSCRIPTS
    num_batches += (len(df_transcripts) % BATCH_SIZE_TRANSCRIPTS > 0)
    for idx in range(0, len(df_transcripts), BATCH_SIZE_TRANSCRIPTS):
        batch += 1
        print('Batch {:d} of {:d}'.format(batch, num_batches))

        # run batch
        idx_stop = min(idx + BATCH_SIZE_TRANSCRIPTS, len(df_transcripts))
        df_on_target, df_off_target = tiger_exhibit(df_transcripts[idx:idx_stop], args.mode, args.check_off_targets)

        # save batch results
        df_on_target.to_csv('on_target.csv', header=batch == 1, index=False, mode='a')
        if args.check_off_targets:
            df_off_target.to_csv('off_target.csv', header=batch == 1, index=False, mode='a')

        # clear session to prevent memory blow up
        tf.keras.backend.clear_session()