Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 8,238 Bytes
d78d0d1 89be9f9 5fc4e72 1ef81e0 89be9f9 1ef81e0 eac7d3f 89be9f9 59874d6 a690e02 457a981 eac7d3f d78d0d1 89be9f9 e38af10 89be9f9 d78d0d1 eac7d3f 34274e5 eac7d3f 34274e5 eac7d3f 457a981 34274e5 eac7d3f 1e16292 eac7d3f 457a981 eac7d3f 457a981 34274e5 457a981 89be9f9 de06d10 59874d6 457a981 814d067 de06d10 457a981 1ef81e0 814d067 e38af10 de06d10 d78d0d1 1ef81e0 e38af10 1ef81e0 d78d0d1 1ef81e0 d78d0d1 1ef81e0 e38af10 1ef81e0 73c24bb 1ef81e0 d78d0d1 1ef81e0 a690e02 1ef81e0 de06d10 350befe de06d10 6ec253f de06d10 4e66e6b 814d067 de06d10 4e66e6b de06d10 1ef81e0 4e66e6b 1ef81e0 de06d10 4e66e6b 3a14dfb 4e66e6b 3a14dfb 4e66e6b cbbf8c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import argparse
import os
import gzip
import numpy as np
import pandas as pd
import tensorflow as tf
from Bio import SeqIO
GUIDE_LEN = 23
CONTEXT_5P = 3
CONTEXT_3P = 0
TARGET_LEN = CONTEXT_5P + GUIDE_LEN + CONTEXT_3P
NUCLEOTIDE_TOKENS = dict(zip(['A', 'C', 'G', 'T', 'N'], [0, 1, 2, 3, 255]))
NUCLEOTIDE_COMPLEMENT = dict(zip(['A', 'C', 'G', 'T'], ['T', 'G', 'C', 'A']))
NUM_TOP_GUIDES = 10
NUM_MISMATCHES = 3
REFERENCE_TRANSCRIPTS = ('gencode.v19.pc_transcripts.fa.gz', 'gencode.v19.lncRNA_transcripts.fa.gz')
# configure GPUs
for gpu in tf.config.list_physical_devices('GPU'):
tf.config.experimental.set_memory_growth(gpu, enable=True)
if len(tf.config.list_physical_devices('GPU')) > 0:
tf.config.experimental.set_visible_devices(tf.config.list_physical_devices('GPU')[0], 'GPU')
def load_transcripts(fasta_files):
# load all transcripts from fasta files into a DataFrame
transcripts = pd.DataFrame()
for file in fasta_files:
try:
if os.path.splitext(file)[1] == '.gz':
with gzip.open(file, 'rt') as f:
df = pd.DataFrame([(t.id, str(t.seq)) for t in SeqIO.parse(f, 'fasta')], columns=['id', 'seq'])
else:
df = pd.DataFrame([(t.id, str(t.seq)) for t in SeqIO.parse(f, 'fasta')], columns=['id', 'seq'])
except Exception as e:
print(e, 'while loading', file)
continue
transcripts = pd.concat([transcripts, df])
# set index
transcripts['id'] = transcripts['id'].apply(lambda s: s.split('|')[0])
transcripts.set_index('id', inplace=True)
assert not transcripts.index.has_duplicates
return transcripts
def sequence_complement(sequence: list):
return [''.join([NUCLEOTIDE_COMPLEMENT[nt] for nt in list(seq)]) for seq in sequence]
def one_hot_encode_sequence(sequence: list, add_context_padding: bool = False):
# stack list of sequences into a tensor
sequence = tf.ragged.stack([tf.constant(list(seq)) for seq in sequence], axis=0)
# tokenize sequence
nucleotide_table = tf.lookup.StaticVocabularyTable(
initializer=tf.lookup.KeyValueTensorInitializer(
keys=tf.constant(list(NUCLEOTIDE_TOKENS.keys()), dtype=tf.string),
values=tf.constant(list(NUCLEOTIDE_TOKENS.values()), dtype=tf.int64)),
num_oov_buckets=1)
sequence = tf.RaggedTensor.from_row_splits(values=nucleotide_table.lookup(sequence.values),
row_splits=sequence.row_splits).to_tensor(255)
# add context padding if requested
if add_context_padding:
pad_5p = 255 * tf.ones([sequence.shape[0], CONTEXT_5P], dtype=sequence.dtype)
pad_3p = 255 * tf.ones([sequence.shape[0], CONTEXT_3P], dtype=sequence.dtype)
sequence = tf.concat([pad_5p, sequence, pad_3p], axis=1)
# one-hot encode
sequence = tf.one_hot(sequence, depth=4)
return sequence
def process_data(transcript_seq: str):
# convert to upper case
transcript_seq = transcript_seq.upper()
# get all target sites
target_seq = [transcript_seq[i: i + TARGET_LEN] for i in range(len(transcript_seq) - TARGET_LEN + 1)]
# prepare guide sequences
guide_seq = sequence_complement([seq[CONTEXT_5P:len(seq) - CONTEXT_3P] for seq in target_seq])
# model inputs
model_inputs = tf.concat([
tf.reshape(one_hot_encode_sequence(target_seq, add_context_padding=False), [len(target_seq), -1]),
tf.reshape(one_hot_encode_sequence(guide_seq, add_context_padding=True), [len(guide_seq), -1]),
], axis=-1)
return target_seq, guide_seq, model_inputs
def predict_on_target(transcript_seq: str, model: tf.keras.Model):
# parse transcript sequence
target_seq, guide_seq, model_inputs = process_data(transcript_seq)
# get predictions
normalized_lfc = model.predict_step(model_inputs)
predictions = pd.DataFrame({'Guide': guide_seq, 'Normalized LFC': tf.squeeze(normalized_lfc).numpy()})
predictions = predictions.set_index('Guide').sort_values('Normalized LFC')
return predictions
def find_off_targets(guides, batch_size=500):
# load reference transcripts
reference_transcripts = load_transcripts([os.path.join('transcripts', f) for f in REFERENCE_TRANSCRIPTS])
# one-hot encode guides to form a filter
guide_filter = one_hot_encode_sequence(sequence_complement(guides), add_context_padding=False)
guide_filter = tf.transpose(guide_filter, [1, 2, 0])
guide_filter = tf.cast(guide_filter, tf.float16)
# loop over transcripts in batches
i = 0
print('Scanning for off-targets')
df_off_targets = pd.DataFrame()
while i < len(reference_transcripts):
# select batch
df_batch = reference_transcripts.iloc[i:min(i + batch_size, len(reference_transcripts))]
i += batch_size
# find and log off-targets
transcripts = one_hot_encode_sequence(df_batch['seq'].values.tolist(), add_context_padding=False)
transcripts = tf.cast(transcripts, guide_filter.dtype)
num_mismatches = GUIDE_LEN - tf.nn.conv1d(transcripts, guide_filter, stride=1, padding='SAME')
loc_off_targets = tf.where(tf.round(num_mismatches) <= NUM_MISMATCHES).numpy()
df_off_targets = pd.concat([df_off_targets, pd.DataFrame({
'Guide': np.array(guides)[loc_off_targets[:, 2]],
'Isoform': df_batch.index.values[loc_off_targets[:, 0]],
'Mismatches': tf.gather_nd(num_mismatches, loc_off_targets).numpy().astype(int),
'Midpoint': loc_off_targets[:, 1],
'Target': df_batch['seq'].values[loc_off_targets[:, 0]],
})])
# progress update
print('\rPercent complete: {:.2f}%'.format(100 * min(i / len(reference_transcripts), 1)), end='')
print('')
# trim transcripts to targets
dict_off_targets = df_off_targets.to_dict('records')
for row in dict_off_targets:
start_location = row['Midpoint'] - (GUIDE_LEN // 2)
if start_location < CONTEXT_5P:
row['Target'] = row['Target'][0:GUIDE_LEN + CONTEXT_3P]
row['Target'] = 'N' * (TARGET_LEN - len(row['Target'])) + row['Target']
elif start_location + GUIDE_LEN + CONTEXT_3P > len(row['Target']):
row['Target'] = row['Target'][start_location - CONTEXT_5P:]
row['Target'] = row['Target'] + 'N' * (TARGET_LEN - len(row['Target']))
else:
row['Target'] = row['Target'][start_location - CONTEXT_5P:start_location + GUIDE_LEN + CONTEXT_3P]
if row['Mismatches'] == 0 and 'N' not in row['Target']:
assert row['Guide'] == sequence_complement([row['Target'][CONTEXT_5P:TARGET_LEN-CONTEXT_3P]])[0]
df_off_targets = pd.DataFrame(dict_off_targets)
return df_off_targets
def predict_off_target(off_targets: pd.DataFrame, model: tf.keras.Model):
if len(off_targets) == 0:
return pd.DataFrame()
# append predictions off-target predictions
model_inputs = tf.concat([
tf.reshape(one_hot_encode_sequence(off_targets['Target'], add_context_padding=False), [len(off_targets), -1]),
tf.reshape(one_hot_encode_sequence(off_targets['Guide'], add_context_padding=True), [len(off_targets), -1]),
], axis=-1)
off_targets['Normalized LFC'] = model.predict_step(model_inputs)
return off_targets.set_index('Guide').sort_values('Normalized LFC')
def tiger_exhibit(transcript):
# load model
if os.path.exists('model'):
tiger = tf.keras.models.load_model('model')
else:
print('no saved model!')
exit()
# on-target predictions
on_target_predictions = predict_on_target(transcript, model=tiger)
# keep only top guides
on_target_predictions = on_target_predictions.iloc[:NUM_TOP_GUIDES]
# predict off-target effects for top guides
off_targets = find_off_targets(on_target_predictions.index.values.tolist())
off_target_predictions = predict_off_target(off_targets, model=tiger)
return on_target_predictions, off_target_predictions
if __name__ == '__main__':
# simple test case
print(tiger_exhibit('ATGCAGGACGCGGAGAACGTGGCGGTGCCCGAGGCGGCCGAGGAGCGCGC'.lower())) # first 50 from EIF3B-003's CDS
|