File size: 6,468 Bytes
5e69dea
89ffb34
89be9f9
5e69dea
 
 
 
 
 
 
 
 
 
 
89be9f9
 
d77f54b
f606ed7
 
 
 
7c87ab2
5e69dea
 
 
 
d3204b1
5e69dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daa1987
 
 
 
 
 
 
 
 
5e69dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import tiger
import pandas as pd
import streamlit as st

ENTRY_METHODS = dict(
    manual='Manual entry of single transcript',
    fasta="Fasta file upload (supports multiple transcripts if they have unique ID's)"
)

# containers
DOCUMENTATION = st.container()
MODE_SELECTION = st.container()
TRANSCRIPT_ENTRY = st.container()
RESULTS = st.container()


@st.cache_data
def convert_df(df):
    # IMPORTANT: Cache the conversion to prevent computation on every rerun
    return df.to_csv().encode('utf-8')


def mode_change_callback():
    if st.session_state.mode == tiger.RUN_MODES['all']:
        st.session_state.check_off_targets = False
        st.session_state.disable_off_target_checkbox = True
    else:
        st.session_state.disable_off_target_checkbox = False


def entry_method_change_callback():
    if st.session_state.entry_method == ENTRY_METHODS['manual']:
        st.session_state.manual_entry_disabled = False
        st.session_state.fasta_entry_disabled = True
    elif st.session_state.entry_method == ENTRY_METHODS['fasta']:
        st.session_state.manual_entry_disabled = True
        st.session_state.fasta_entry_disabled = False


def process_input():

    # initialize transcript DataFrame
    st.session_state.transcripts = pd.DataFrame()

    # manual entry
    if st.session_state.entry_method == ENTRY_METHODS['manual']:
        sequence = st.session_state.manual_entry
        if len(sequence) < tiger.TARGET_LEN:
            with TRANSCRIPT_ENTRY:
                st.write('Transcript must be at least {:d} bases.'.format(tiger.TARGET_LEN))
        else:
            st.session_state.transcripts = pd.DataFrame({tiger.ID_COL: ['ManualEntry'], tiger.SEQ_COL: [sequence]})

    # fasta file upload
    elif st.session_state.entry_method == ENTRY_METHODS['fasta']:
        if st.session_state.fasta_entry is not None:
            fasta_path = st.session_state.fasta_entry.name
            with open(fasta_path, 'w') as f:
                f.write(st.session_state.fasta_entry.getvalue().decode('utf-8'))
            df = tiger.load_transcripts([fasta_path], enforce_unique_ids=False)
            if df.index.has_duplicates:
                with TRANSCRIPT_ENTRY:
                    st.write("Duplicate transcript ID's detected in fasta file")
            else:
                st.session_state.transcripts = df

    # TODO: convert to upper and check for ACGT only
    print(st.session_state.transcripts)


if __name__ == '__main__':

    # app initialization
    if 'mode' not in st.session_state:
        st.session_state.mode = tiger.RUN_MODES['all']
        st.session_state.disable_off_target_checkbox = True
    if 'entry_method' not in st.session_state:
        st.session_state.entry_method = ENTRY_METHODS['manual']
        st.session_state.manual_entry_disabled = False
        st.session_state.fasta_entry_disabled = True

    # title and documentation
    with DOCUMENTATION:
        st.title('TIGER Cas13 Efficacy Prediction')

    # mode selection
    with MODE_SELECTION:
        col1, col2 = st.columns([0.65, 0.35])
        with col1:
            st.radio(
                label='What do you want to predict?',
                options=tuple(tiger.RUN_MODES.values()),
                key='mode',
                on_change=mode_change_callback
            )
        with col2:
            st.checkbox(
                label='Find off-target effects (slow)',
                key='check_off_targets',
                disabled=st.session_state.disable_off_target_checkbox
            )

    # transcript entry
    with TRANSCRIPT_ENTRY:
        st.selectbox(
            label='How would you like to provide transcripts of interest?',
            options=ENTRY_METHODS.values(),
            key='entry_method',
            on_change=entry_method_change_callback
        )
        st.text_input(
            label='Enter a target transcript:',
            key='manual_entry',
            placeholder='Upper or lower case',
            disabled=st.session_state.manual_entry_disabled
        )
        st.file_uploader(
            label='Upload a fasta file:',
            key='fasta_entry',
            disabled=st.session_state.fasta_entry_disabled
        )
        run = st.button(label='Get predictions!', on_click=process_input)

    with RESULTS:
        if run:
            on_target, off_target = tiger.tiger_exhibit(
                transcripts=st.session_state.transcripts,
                mode={v: k for k, v in tiger.RUN_MODES.items()}[st.session_state.mode],
                status=st.empty(),
                progress_bar=st.progress(0),
                check_off_targets=st.session_state.check_off_targets
            )

    # # input-specific configuration
    # if manual_mode:
    #     src_seq = st.session_state['manual_seq']
    #     status_text = manual_entry.empty()
    #     status_bar = manual_entry.progress(0)
    # elif fasta_mode:
    #     src_seq = st.session_state['fasta_seq']
    #     status_text = fasta_form.empty()
    #     status_bar = fasta_form.progress(0)
    # else:
    #     src_seq = status_bar = status_text = None
    #
    # # valid input
    # if src_seq and all([True if nt.upper() in NUCLEOTIDE_TOKENS.keys() else False for nt in src_seq]):
    #     on_target, off_target = tiger_exhibit(pd.DataFrame(dict(id=['ManualEntry'], seq=[src_seq])),
    #                                           status_bar, status_text, check_off_targets=option == 'On and Off Target')
    #     on_target.rename(columns={'Guide': '23 nt guide sequence'}, inplace=True)
    #     if len(on_target) > 0:
    #         if on_target.iloc[0]['On-target ID'] == 0:
    #             on_target.drop(['On-target ID'], axis=1, inplace=True)
    #     st.write('On-target predictions: ', on_target)
    #     st.download_button(label='Download', data=convert_df(on_target), file_name='on_target.csv', mime='text/csv')
    #     if option == 'On and Off Target' and len(off_target) > 0:
    #         off_target.rename(columns={'Guide': '23 nt guide sequence'}, inplace=True)
    #         st.write('Off-target predictions: ', off_target)
    #         st.download_button(label='Download', data=convert_df(off_target), file_name='off_target.csv', mime='text/csv')
    #     elif option == 'On and Off Target' and len(off_target) == 0:
    #         st.write('We did not find any off-target effects!')
    #
    # # invalid input
    # elif src_seq is not None:
    #     st.write('Invalid input!')