tiger / tiger.py
Andrew Stirn
load_transcripts function
d78d0d1
raw
history blame
8.24 kB
import argparse
import os
import gzip
import numpy as np
import pandas as pd
import tensorflow as tf
from Bio import SeqIO
GUIDE_LEN = 23
CONTEXT_5P = 3
CONTEXT_3P = 0
TARGET_LEN = CONTEXT_5P + GUIDE_LEN + CONTEXT_3P
NUCLEOTIDE_TOKENS = dict(zip(['A', 'C', 'G', 'T', 'N'], [0, 1, 2, 3, 255]))
NUCLEOTIDE_COMPLEMENT = dict(zip(['A', 'C', 'G', 'T'], ['T', 'G', 'C', 'A']))
NUM_TOP_GUIDES = 10
NUM_MISMATCHES = 3
REFERENCE_TRANSCRIPTS = ('gencode.v19.pc_transcripts.fa.gz', 'gencode.v19.lncRNA_transcripts.fa.gz')
# configure GPUs
for gpu in tf.config.list_physical_devices('GPU'):
tf.config.experimental.set_memory_growth(gpu, enable=True)
if len(tf.config.list_physical_devices('GPU')) > 0:
tf.config.experimental.set_visible_devices(tf.config.list_physical_devices('GPU')[0], 'GPU')
def load_transcripts(fasta_files):
# load all transcripts from fasta files into a DataFrame
transcripts = pd.DataFrame()
for file in fasta_files:
try:
if os.path.splitext(file)[1] == '.gz':
with gzip.open(file, 'rt') as f:
df = pd.DataFrame([(t.id, str(t.seq)) for t in SeqIO.parse(f, 'fasta')], columns=['id', 'seq'])
else:
df = pd.DataFrame([(t.id, str(t.seq)) for t in SeqIO.parse(f, 'fasta')], columns=['id', 'seq'])
except Exception as e:
print(e, 'while loading', file)
continue
transcripts = pd.concat([transcripts, df])
# set index
transcripts['id'] = transcripts['id'].apply(lambda s: s.split('|')[0])
transcripts.set_index('id', inplace=True)
assert not transcripts.index.has_duplicates
return transcripts
def sequence_complement(sequence: list):
return [''.join([NUCLEOTIDE_COMPLEMENT[nt] for nt in list(seq)]) for seq in sequence]
def one_hot_encode_sequence(sequence: list, add_context_padding: bool = False):
# stack list of sequences into a tensor
sequence = tf.ragged.stack([tf.constant(list(seq)) for seq in sequence], axis=0)
# tokenize sequence
nucleotide_table = tf.lookup.StaticVocabularyTable(
initializer=tf.lookup.KeyValueTensorInitializer(
keys=tf.constant(list(NUCLEOTIDE_TOKENS.keys()), dtype=tf.string),
values=tf.constant(list(NUCLEOTIDE_TOKENS.values()), dtype=tf.int64)),
num_oov_buckets=1)
sequence = tf.RaggedTensor.from_row_splits(values=nucleotide_table.lookup(sequence.values),
row_splits=sequence.row_splits).to_tensor(255)
# add context padding if requested
if add_context_padding:
pad_5p = 255 * tf.ones([sequence.shape[0], CONTEXT_5P], dtype=sequence.dtype)
pad_3p = 255 * tf.ones([sequence.shape[0], CONTEXT_3P], dtype=sequence.dtype)
sequence = tf.concat([pad_5p, sequence, pad_3p], axis=1)
# one-hot encode
sequence = tf.one_hot(sequence, depth=4)
return sequence
def process_data(transcript_seq: str):
# convert to upper case
transcript_seq = transcript_seq.upper()
# get all target sites
target_seq = [transcript_seq[i: i + TARGET_LEN] for i in range(len(transcript_seq) - TARGET_LEN + 1)]
# prepare guide sequences
guide_seq = sequence_complement([seq[CONTEXT_5P:len(seq) - CONTEXT_3P] for seq in target_seq])
# model inputs
model_inputs = tf.concat([
tf.reshape(one_hot_encode_sequence(target_seq, add_context_padding=False), [len(target_seq), -1]),
tf.reshape(one_hot_encode_sequence(guide_seq, add_context_padding=True), [len(guide_seq), -1]),
], axis=-1)
return target_seq, guide_seq, model_inputs
def predict_on_target(transcript_seq: str, model: tf.keras.Model):
# parse transcript sequence
target_seq, guide_seq, model_inputs = process_data(transcript_seq)
# get predictions
normalized_lfc = model.predict_step(model_inputs)
predictions = pd.DataFrame({'Guide': guide_seq, 'Normalized LFC': tf.squeeze(normalized_lfc).numpy()})
predictions = predictions.set_index('Guide').sort_values('Normalized LFC')
return predictions
def find_off_targets(guides, batch_size=500):
# load reference transcripts
reference_transcripts = load_transcripts([os.path.join('transcripts', f) for f in REFERENCE_TRANSCRIPTS])
# one-hot encode guides to form a filter
guide_filter = one_hot_encode_sequence(sequence_complement(guides), add_context_padding=False)
guide_filter = tf.transpose(guide_filter, [1, 2, 0])
guide_filter = tf.cast(guide_filter, tf.float16)
# loop over transcripts in batches
i = 0
print('Scanning for off-targets')
df_off_targets = pd.DataFrame()
while i < len(reference_transcripts):
# select batch
df_batch = reference_transcripts.iloc[i:min(i + batch_size, len(reference_transcripts))]
i += batch_size
# find and log off-targets
transcripts = one_hot_encode_sequence(df_batch['seq'].values.tolist(), add_context_padding=False)
transcripts = tf.cast(transcripts, guide_filter.dtype)
num_mismatches = GUIDE_LEN - tf.nn.conv1d(transcripts, guide_filter, stride=1, padding='SAME')
loc_off_targets = tf.where(tf.round(num_mismatches) <= NUM_MISMATCHES).numpy()
df_off_targets = pd.concat([df_off_targets, pd.DataFrame({
'Guide': np.array(guides)[loc_off_targets[:, 2]],
'Isoform': df_batch.index.values[loc_off_targets[:, 0]],
'Mismatches': tf.gather_nd(num_mismatches, loc_off_targets).numpy().astype(int),
'Midpoint': loc_off_targets[:, 1],
'Target': df_batch['seq'].values[loc_off_targets[:, 0]],
})])
# progress update
print('\rPercent complete: {:.2f}%'.format(100 * min(i / len(reference_transcripts), 1)), end='')
print('')
# trim transcripts to targets
dict_off_targets = df_off_targets.to_dict('records')
for row in dict_off_targets:
start_location = row['Midpoint'] - (GUIDE_LEN // 2)
if start_location < CONTEXT_5P:
row['Target'] = row['Target'][0:GUIDE_LEN + CONTEXT_3P]
row['Target'] = 'N' * (TARGET_LEN - len(row['Target'])) + row['Target']
elif start_location + GUIDE_LEN + CONTEXT_3P > len(row['Target']):
row['Target'] = row['Target'][start_location - CONTEXT_5P:]
row['Target'] = row['Target'] + 'N' * (TARGET_LEN - len(row['Target']))
else:
row['Target'] = row['Target'][start_location - CONTEXT_5P:start_location + GUIDE_LEN + CONTEXT_3P]
if row['Mismatches'] == 0 and 'N' not in row['Target']:
assert row['Guide'] == sequence_complement([row['Target'][CONTEXT_5P:TARGET_LEN-CONTEXT_3P]])[0]
df_off_targets = pd.DataFrame(dict_off_targets)
return df_off_targets
def predict_off_target(off_targets: pd.DataFrame, model: tf.keras.Model):
if len(off_targets) == 0:
return pd.DataFrame()
# append predictions off-target predictions
model_inputs = tf.concat([
tf.reshape(one_hot_encode_sequence(off_targets['Target'], add_context_padding=False), [len(off_targets), -1]),
tf.reshape(one_hot_encode_sequence(off_targets['Guide'], add_context_padding=True), [len(off_targets), -1]),
], axis=-1)
off_targets['Normalized LFC'] = model.predict_step(model_inputs)
return off_targets.set_index('Guide').sort_values('Normalized LFC')
def tiger_exhibit(transcript):
# load model
if os.path.exists('model'):
tiger = tf.keras.models.load_model('model')
else:
print('no saved model!')
exit()
# on-target predictions
on_target_predictions = predict_on_target(transcript, model=tiger)
# keep only top guides
on_target_predictions = on_target_predictions.iloc[:NUM_TOP_GUIDES]
# predict off-target effects for top guides
off_targets = find_off_targets(on_target_predictions.index.values.tolist())
off_target_predictions = predict_off_target(off_targets, model=tiger)
return on_target_predictions, off_target_predictions
if __name__ == '__main__':
# simple test case
print(tiger_exhibit('ATGCAGGACGCGGAGAACGTGGCGGTGCCCGAGGCGGCCGAGGAGCGCGC'.lower())) # first 50 from EIF3B-003's CDS