Andrew Stirn commited on
Commit
cb8c873
·
1 Parent(s): f606ed7
Files changed (2) hide show
  1. app.py +2 -12
  2. run.py +1 -14
app.py CHANGED
@@ -1,17 +1,7 @@
1
  import streamlit as st
2
- import pandas as pd
3
- from run import run, GUIDE_LEN, NUCLEOTIDE_TOKENS
4
 
5
 
6
- # def run_with_input(reset=False):
7
- # if reset:
8
- # st.write("")
9
- # return 0
10
- # returned_x = run(st.session_state["userInput"])
11
- # csv_x = returned_x.to_csv()
12
- # st.write("model prediction: ", returned_x)
13
- # return csv_x
14
-
15
  @st.cache
16
  def convert_df(df):
17
  # IMPORTANT: Cache the conversion to prevent computation on every rerun
@@ -29,7 +19,7 @@ if len(st.session_state['userInput']) < GUIDE_LEN:
29
  st.write("")
30
  elif all([True if nt.upper() in NUCLEOTIDE_TOKENS.keys() else False for nt in st.session_state['userInput']]):
31
  st.write('This is your sequence', st.session_state['userInput'])
32
- predictions = run(st.session_state['userInput'])
33
  st.write('Model predictions: ', predictions)
34
  csv = convert_df(predictions)
35
  st.download_button(label='Download CSV file', data=csv, file_name='tiger_predictions.csv', mime='text/csv')
 
1
  import streamlit as st
2
+ from run import tiger_predict, GUIDE_LEN, NUCLEOTIDE_TOKENS
 
3
 
4
 
 
 
 
 
 
 
 
 
 
5
  @st.cache
6
  def convert_df(df):
7
  # IMPORTANT: Cache the conversion to prevent computation on every rerun
 
19
  st.write("")
20
  elif all([True if nt.upper() in NUCLEOTIDE_TOKENS.keys() else False for nt in st.session_state['userInput']]):
21
  st.write('This is your sequence', st.session_state['userInput'])
22
+ predictions = tiger_predict(st.session_state['userInput'])
23
  st.write('Model predictions: ', predictions)
24
  csv = convert_df(predictions)
25
  st.download_button(label='Download CSV file', data=csv, file_name='tiger_predictions.csv', mime='text/csv')
run.py CHANGED
@@ -1,5 +1,4 @@
1
  import os
2
- import sys
3
  import tensorflow as tf
4
  import pandas as pd
5
 
@@ -37,22 +36,10 @@ def gen_report_table(input_gens, res):
37
  return tbl
38
 
39
 
40
- def run(x):
41
  input_gens, model_input_x = process_data(x)
42
  # print("input gene: ", input_gens)
43
  # print("model_input: ", model_input_x)
44
  res = tiger.predict_step(model_input_x)
45
  # print("res: ", res)
46
  return gen_report_table(input_gens, res)
47
-
48
-
49
- # if __name__ == "__main__":
50
- # if len(sys.argv) == 1:
51
- # print("you need to specify 23 character gen information")
52
- # exit()
53
- # x = sys.argv[1]
54
- # if len(x) != 23:
55
- # print("you need to specify 23 character gen information. You typed %s chars" % len(x))
56
- # exit()
57
- # elif all([True if item in "ACGT" else False for item in x]):
58
- # print("run succesfully: ", run(x))
 
1
  import os
 
2
  import tensorflow as tf
3
  import pandas as pd
4
 
 
36
  return tbl
37
 
38
 
39
+ def tiger_predict(x):
40
  input_gens, model_input_x = process_data(x)
41
  # print("input gene: ", input_gens)
42
  # print("model_input: ", model_input_x)
43
  res = tiger.predict_step(model_input_x)
44
  # print("res: ", res)
45
  return gen_report_table(input_gens, res)