Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| from fix_int8 import fix_pytorch_int8 | |
| fix_pytorch_int8() | |
| # import subprocess | |
| # result = subprocess.run(['git', 'clone', 'https://huggingface.co/KumaTea/twitter-int8', 'model'], capture_output=True, text=True) | |
| # print(result.stdout) | |
| # Credit: | |
| # https://huggingface.co/spaces/ljsabc/Fujisaki/blob/main/app.py | |
| import torch | |
| import logging | |
| import gradio as gr | |
| from transformers import AutoTokenizer, GenerationConfig, AutoModel | |
| gr_title = """<h1 align="center">KumaGLM Lite</h1> | |
| <h3 align='center'>这是<a href="https://huggingface.co/spaces/KumaTea/KumaGLM" target="_blank">另一个</a> AI Kuma,你可以与他聊天,或者直接在文本框按下Enter</h3> | |
| <p align='center'>采用 INT4 量化,速度很慢,仅作备用</p> | |
| <p align='center'>GitHub Repo: <a class="github-button" href="https://github.com/KumaTea/ChatGLM" aria-label="Star KumaTea/ChatGLM on GitHub">KumaTea/ChatGLM</a></p> | |
| <script async defer src="https://buttons.github.io/buttons.js"></script> | |
| """ | |
| gr_footer = """<p align='center'> | |
| 本项目基于 | |
| <a href='https://github.com/ljsabc/Fujisaki' target='_blank'>ljsabc/Fujisaki</a> | |
| ,模型采用 | |
| <a href='https://huggingface.co/THUDM/chatglm-6b' target='_blank'>THUDM/chatglm-6b</a> | |
| 。 | |
| </p> | |
| <p align='center'> | |
| <em>每天起床第一句!</em> | |
| </p>""" | |
| default_start = ["你是谁?", "我是 kuma"] | |
| # device = torch.device('cpu') | |
| # torch.cuda.current_device = lambda : device | |
| logging.basicConfig( | |
| format='%(asctime)s %(levelname)-8s %(message)s', | |
| level=logging.INFO, | |
| datefmt='%m/%d %H:%M:%S') | |
| model = AutoModel.from_pretrained( | |
| "KumaTea/twitter-int4", | |
| trust_remote_code=True, | |
| revision="e2aecb2" | |
| ).float() # .to(device) | |
| tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, revision="4de8efe") | |
| # dump a log to ensure everything works well | |
| # print(model.peft_config) | |
| # We have to use full precision, as some tokens are >65535 | |
| model.eval() | |
| # print(model) | |
| torch.set_default_tensor_type(torch.FloatTensor) | |
| def evaluate(context, temperature, top_p, top_k=None): | |
| generation_config = GenerationConfig( | |
| temperature=temperature, | |
| top_p=top_p, | |
| # top_k=top_k, | |
| #repetition_penalty=1.1, | |
| num_beams=1, | |
| do_sample=True, | |
| ) | |
| with torch.no_grad(): | |
| # input_text = f"Context: {context}Answer: " | |
| input_text = '||'.join(default_start) + '||' | |
| input_text += context + '||' | |
| logging.info('[API] Incoming request: ' + input_text) | |
| ids = tokenizer([input_text], return_tensors="pt") | |
| inputs = ids.to("cpu") | |
| out = model.generate( | |
| **inputs, | |
| max_length=224, | |
| generation_config=generation_config | |
| ) | |
| out = out.tolist()[0] | |
| decoder_output = tokenizer.decode(out) | |
| # out_text = decoder_output.split("Answer: ")[1] | |
| out_text = decoder_output | |
| logging.info('[API] Result: ' + out_text) | |
| return out_text | |
| def evaluate_stream(msg, history, temperature, top_p): | |
| generation_config = GenerationConfig( | |
| temperature=temperature, | |
| top_p=top_p, | |
| #repetition_penalty=1.1, | |
| num_beams=1, | |
| do_sample=True, | |
| ) | |
| if not msg: | |
| msg = '……' | |
| history.append([msg, ""]) | |
| context = '||'.join(default_start) + '||' | |
| if len(history) > 4: | |
| history.pop(0) | |
| for j in range(len(history)): | |
| history[j][0] = history[j][0].replace("<br>", "") | |
| # concatenate context | |
| for h in history[:-1]: | |
| context += h[0] + "||" + h[1] + "||" | |
| context += history[-1][0] + "||" | |
| context = context.replace(r'<br>', '') | |
| # TODO: Avoid the tokens are too long. | |
| CUTOFF = 224 | |
| while len(tokenizer.encode(context)) > CUTOFF: | |
| # save 15 token size for the answer | |
| context = context[15:] | |
| h = [] | |
| logging.info('[UI] Incoming request: ' + context) | |
| for response, h in model.stream_chat(tokenizer, context, h, max_length=CUTOFF, top_p=top_p, temperature=temperature): | |
| history[-1][1] = response | |
| yield history, "" | |
| with gr.Blocks() as demo: | |
| gr.HTML(gr_title) | |
| # state = gr.State() | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| temp = gr.components.Slider(minimum=0, maximum=1.1, value=0.5, label="Temperature", | |
| info="温度参数,越高的温度生成的内容越丰富,但是有可能出现语法问题。小的温度也能帮助生成更相关的回答。") | |
| top_p = gr.components.Slider(minimum=0.5, maximum=1.0, value=0.8, label="Top-p", | |
| info="top-p参数,只输出前p>top-p的文字,越大生成的内容越丰富,但也可能出现语法问题。数字越小似乎上下文的衔接性越好。") | |
| #code = gr.Textbox(label="temp_output", info="解码器输出") | |
| #top_k = gr.components.Slider(minimum=1, maximum=200, step=1, value=25, label="Top k", | |
| # info="top-k参数,下一个输出的文字会从top-k个文字中进行选择,越大生成的内容越丰富,但也可能出现语法问题。数字越小似乎上下文的衔接性越好。") | |
| with gr.Column(scale=3): | |
| chatbot = gr.Chatbot(label="聊天框", info="") | |
| msg = gr.Textbox(label="输入框", placeholder="最近过得怎么样?", | |
| info="输入你的内容,按 [Enter] 发送。什么都不填经常会出错。") | |
| clear = gr.Button("清除聊天") | |
| api_handler = gr.Button("API", visible=False) | |
| textbox_for_api = gr.Textbox(visible=False) | |
| msg.submit(evaluate_stream, [msg, chatbot, temp, top_p], [chatbot, msg]) | |
| clear.click(lambda: None, None, chatbot, queue=False) | |
| api_handler.click(evaluate, [textbox_for_api, temp, top_p], [textbox_for_api], api_name='chat') | |
| gr.HTML(gr_footer) | |
| demo.queue() | |
| demo.launch(debug=False) | |