Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
9c80bc6
1
Parent(s):
efdf581
Update app.py
Browse files
app.py
CHANGED
|
@@ -53,64 +53,64 @@ transformer_path = "Kunbyte/ROSE"
|
|
| 53 |
config_path = "./configs/wan2.1/wan_civitai.yaml"
|
| 54 |
config = OmegaConf.load(config_path)
|
| 55 |
|
| 56 |
-
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
|
| 63 |
-
|
| 64 |
|
| 65 |
-
# text_encoder = WanT5EncoderModel.from_pretrained(
|
| 66 |
-
# text_encoder_path,
|
| 67 |
-
# additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
|
| 68 |
-
# low_cpu_mem_usage=False,
|
| 69 |
-
# torch_dtype=torch.bfloat16
|
| 70 |
-
# )
|
| 71 |
-
|
| 72 |
-
# clip_image_encoder = CLIPModel.from_pretrained(image_encoder_path)
|
| 73 |
-
|
| 74 |
-
# vae = AutoencoderKLWan.from_pretrained(
|
| 75 |
-
# vae_path,
|
| 76 |
-
# additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
|
| 77 |
-
# )
|
| 78 |
-
|
| 79 |
-
# transformer_subpath = config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')
|
| 80 |
-
# transformer3d = WanTransformer3DModel.from_pretrained(
|
| 81 |
-
# transformer_path,
|
| 82 |
-
# subfolder=transformer_subpath,
|
| 83 |
-
# transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
|
| 84 |
-
# )
|
| 85 |
-
|
| 86 |
-
# noise_scheduler = FlowMatchEulerDiscreteScheduler(
|
| 87 |
-
# **filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs']))
|
| 88 |
-
# )
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 92 |
-
os.path.join(pretrained_model_path, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')),
|
| 93 |
-
)
|
| 94 |
text_encoder = WanT5EncoderModel.from_pretrained(
|
| 95 |
-
|
| 96 |
additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
|
| 97 |
-
low_cpu_mem_usage=
|
| 98 |
-
|
| 99 |
-
clip_image_encoder = CLIPModel.from_pretrained(
|
| 100 |
-
os.path.join(pretrained_model_path, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')),
|
| 101 |
)
|
|
|
|
|
|
|
|
|
|
| 102 |
vae = AutoencoderKLWan.from_pretrained(
|
| 103 |
-
|
| 104 |
additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
|
| 105 |
)
|
|
|
|
|
|
|
| 106 |
transformer3d = WanTransformer3DModel.from_pretrained(
|
| 107 |
-
|
|
|
|
| 108 |
transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
|
| 109 |
)
|
|
|
|
| 110 |
noise_scheduler = FlowMatchEulerDiscreteScheduler(
|
| 111 |
**filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs']))
|
| 112 |
)
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
pipeline = WanFunInpaintPipeline(
|
| 115 |
vae=vae,
|
| 116 |
text_encoder=text_encoder,
|
|
|
|
| 53 |
config_path = "./configs/wan2.1/wan_civitai.yaml"
|
| 54 |
config = OmegaConf.load(config_path)
|
| 55 |
|
| 56 |
+
repo_id = "alibaba-pai/Wan2.1-Fun-1.3B-InP"
|
| 57 |
|
| 58 |
+
text_encoder_path = download_component_subfolder(repo_id, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder'))
|
| 59 |
+
tokenizer_path = download_component_subfolder(repo_id, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer'))
|
| 60 |
+
image_encoder_path = download_component_subfolder(repo_id, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder'))
|
| 61 |
+
vae_path = download_component_subfolder(repo_id, config['vae_kwargs'].get('vae_subpath', 'vae'))
|
| 62 |
|
| 63 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
text_encoder = WanT5EncoderModel.from_pretrained(
|
| 66 |
+
text_encoder_path,
|
| 67 |
additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
|
| 68 |
+
low_cpu_mem_usage=False,
|
| 69 |
+
torch_dtype=torch.bfloat16
|
|
|
|
|
|
|
| 70 |
)
|
| 71 |
+
|
| 72 |
+
clip_image_encoder = CLIPModel.from_pretrained(image_encoder_path)
|
| 73 |
+
|
| 74 |
vae = AutoencoderKLWan.from_pretrained(
|
| 75 |
+
vae_path,
|
| 76 |
additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
|
| 77 |
)
|
| 78 |
+
|
| 79 |
+
transformer_subpath = config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')
|
| 80 |
transformer3d = WanTransformer3DModel.from_pretrained(
|
| 81 |
+
transformer_path,
|
| 82 |
+
subfolder=transformer_subpath,
|
| 83 |
transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
|
| 84 |
)
|
| 85 |
+
|
| 86 |
noise_scheduler = FlowMatchEulerDiscreteScheduler(
|
| 87 |
**filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs']))
|
| 88 |
)
|
| 89 |
|
| 90 |
+
|
| 91 |
+
# tokenizer = AutoTokenizer.from_pretrained(
|
| 92 |
+
# os.path.join(pretrained_model_path, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')),
|
| 93 |
+
# )
|
| 94 |
+
# text_encoder = WanT5EncoderModel.from_pretrained(
|
| 95 |
+
# os.path.join(pretrained_model_path, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')),
|
| 96 |
+
# additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
|
| 97 |
+
# low_cpu_mem_usage=True,
|
| 98 |
+
# )
|
| 99 |
+
# clip_image_encoder = CLIPModel.from_pretrained(
|
| 100 |
+
# os.path.join(pretrained_model_path, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')),
|
| 101 |
+
# )
|
| 102 |
+
# vae = AutoencoderKLWan.from_pretrained(
|
| 103 |
+
# os.path.join(pretrained_model_path, config['vae_kwargs'].get('vae_subpath', 'vae')),
|
| 104 |
+
# additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
|
| 105 |
+
# )
|
| 106 |
+
# transformer3d = WanTransformer3DModel.from_pretrained(
|
| 107 |
+
# os.path.join(transformer_path, config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')),
|
| 108 |
+
# transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
|
| 109 |
+
# )
|
| 110 |
+
# noise_scheduler = FlowMatchEulerDiscreteScheduler(
|
| 111 |
+
# **filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs']))
|
| 112 |
+
# )
|
| 113 |
+
|
| 114 |
pipeline = WanFunInpaintPipeline(
|
| 115 |
vae=vae,
|
| 116 |
text_encoder=text_encoder,
|