weiyuchoumou526 commited on
Commit
9c80bc6
·
1 Parent(s): efdf581

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -42
app.py CHANGED
@@ -53,64 +53,64 @@ transformer_path = "Kunbyte/ROSE"
53
  config_path = "./configs/wan2.1/wan_civitai.yaml"
54
  config = OmegaConf.load(config_path)
55
 
56
- # repo_id = "alibaba-pai/Wan2.1-Fun-1.3B-InP"
57
 
58
- # text_encoder_path = download_component_subfolder(repo_id, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder'))
59
- # tokenizer_path = download_component_subfolder(repo_id, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer'))
60
- # image_encoder_path = download_component_subfolder(repo_id, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder'))
61
- # vae_path = download_component_subfolder(repo_id, config['vae_kwargs'].get('vae_subpath', 'vae'))
62
 
63
- # tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
64
 
65
- # text_encoder = WanT5EncoderModel.from_pretrained(
66
- # text_encoder_path,
67
- # additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
68
- # low_cpu_mem_usage=False,
69
- # torch_dtype=torch.bfloat16
70
- # )
71
-
72
- # clip_image_encoder = CLIPModel.from_pretrained(image_encoder_path)
73
-
74
- # vae = AutoencoderKLWan.from_pretrained(
75
- # vae_path,
76
- # additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
77
- # )
78
-
79
- # transformer_subpath = config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')
80
- # transformer3d = WanTransformer3DModel.from_pretrained(
81
- # transformer_path,
82
- # subfolder=transformer_subpath,
83
- # transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
84
- # )
85
-
86
- # noise_scheduler = FlowMatchEulerDiscreteScheduler(
87
- # **filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs']))
88
- # )
89
-
90
-
91
- tokenizer = AutoTokenizer.from_pretrained(
92
- os.path.join(pretrained_model_path, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')),
93
- )
94
  text_encoder = WanT5EncoderModel.from_pretrained(
95
- os.path.join(pretrained_model_path, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')),
96
  additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
97
- low_cpu_mem_usage=True,
98
- )
99
- clip_image_encoder = CLIPModel.from_pretrained(
100
- os.path.join(pretrained_model_path, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')),
101
  )
 
 
 
102
  vae = AutoencoderKLWan.from_pretrained(
103
- os.path.join(pretrained_model_path, config['vae_kwargs'].get('vae_subpath', 'vae')),
104
  additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
105
  )
 
 
106
  transformer3d = WanTransformer3DModel.from_pretrained(
107
- os.path.join(transformer_path, config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')),
 
108
  transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
109
  )
 
110
  noise_scheduler = FlowMatchEulerDiscreteScheduler(
111
  **filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs']))
112
  )
113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
  pipeline = WanFunInpaintPipeline(
115
  vae=vae,
116
  text_encoder=text_encoder,
 
53
  config_path = "./configs/wan2.1/wan_civitai.yaml"
54
  config = OmegaConf.load(config_path)
55
 
56
+ repo_id = "alibaba-pai/Wan2.1-Fun-1.3B-InP"
57
 
58
+ text_encoder_path = download_component_subfolder(repo_id, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder'))
59
+ tokenizer_path = download_component_subfolder(repo_id, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer'))
60
+ image_encoder_path = download_component_subfolder(repo_id, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder'))
61
+ vae_path = download_component_subfolder(repo_id, config['vae_kwargs'].get('vae_subpath', 'vae'))
62
 
63
+ tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  text_encoder = WanT5EncoderModel.from_pretrained(
66
+ text_encoder_path,
67
  additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
68
+ low_cpu_mem_usage=False,
69
+ torch_dtype=torch.bfloat16
 
 
70
  )
71
+
72
+ clip_image_encoder = CLIPModel.from_pretrained(image_encoder_path)
73
+
74
  vae = AutoencoderKLWan.from_pretrained(
75
+ vae_path,
76
  additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
77
  )
78
+
79
+ transformer_subpath = config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')
80
  transformer3d = WanTransformer3DModel.from_pretrained(
81
+ transformer_path,
82
+ subfolder=transformer_subpath,
83
  transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
84
  )
85
+
86
  noise_scheduler = FlowMatchEulerDiscreteScheduler(
87
  **filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs']))
88
  )
89
 
90
+
91
+ # tokenizer = AutoTokenizer.from_pretrained(
92
+ # os.path.join(pretrained_model_path, config['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')),
93
+ # )
94
+ # text_encoder = WanT5EncoderModel.from_pretrained(
95
+ # os.path.join(pretrained_model_path, config['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')),
96
+ # additional_kwargs=OmegaConf.to_container(config['text_encoder_kwargs']),
97
+ # low_cpu_mem_usage=True,
98
+ # )
99
+ # clip_image_encoder = CLIPModel.from_pretrained(
100
+ # os.path.join(pretrained_model_path, config['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')),
101
+ # )
102
+ # vae = AutoencoderKLWan.from_pretrained(
103
+ # os.path.join(pretrained_model_path, config['vae_kwargs'].get('vae_subpath', 'vae')),
104
+ # additional_kwargs=OmegaConf.to_container(config['vae_kwargs']),
105
+ # )
106
+ # transformer3d = WanTransformer3DModel.from_pretrained(
107
+ # os.path.join(transformer_path, config['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')),
108
+ # transformer_additional_kwargs=OmegaConf.to_container(config['transformer_additional_kwargs']),
109
+ # )
110
+ # noise_scheduler = FlowMatchEulerDiscreteScheduler(
111
+ # **filter_kwargs(FlowMatchEulerDiscreteScheduler, OmegaConf.to_container(config['scheduler_kwargs']))
112
+ # )
113
+
114
  pipeline = WanFunInpaintPipeline(
115
  vae=vae,
116
  text_encoder=text_encoder,