Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from functools import partial | |
| from transformers import pipeline, pipelines | |
| from sentence_transformers import SentenceTransformer, util | |
| from scipy.special import softmax | |
| import os | |
| ###################### | |
| ##### INFERENCE ###### | |
| ###################### | |
| class SentenceSimilarity: | |
| def __init__(self, model: str): | |
| self.model = SentenceTransformer(model) | |
| def __call__(self, query: str, corpus: list[str]): | |
| query_embedding = self.model.encode(query) | |
| corpus_embeddings = self.model.encode(corpus) | |
| output = util.semantic_search(query_embedding, corpus_embeddings) | |
| sorted_output = sorted(output[0], key=lambda x: x["corpus_id"]) | |
| probabilities = softmax([x["score"] for x in sorted_output]) | |
| return probabilities | |
| # Sentence Similarity | |
| def sentence_similarity(text: str, documents: list[str], pipe: SentenceSimilarity): | |
| doc_texts = [] | |
| for doc in documents: | |
| f = open(doc, "r") | |
| doc_texts.append(f.read()) | |
| answer = pipe(query=text, corpus=doc_texts) | |
| return {os.path.basename(doc): prob for doc, prob in zip(documents, answer)} | |
| # Text Analysis | |
| def cls_inference(input: list[str], pipe: pipeline) -> dict: | |
| results = pipe(input, top_k=None) | |
| return {x["label"]: x["score"] for x in results} | |
| # POSP | |
| def tagging(text: str, pipe: pipeline): | |
| output = pipe(text) | |
| return {"text": text, "entities": output} | |
| # Text Analysis | |
| def text_analysis(text, pipes: list[pipeline]): | |
| outputs = [] | |
| for pipe in pipes: | |
| if isinstance(pipe, pipelines.token_classification.TokenClassificationPipeline): | |
| outputs.append(tagging(text, pipe)) | |
| else: | |
| outputs.append(cls_inference(text, pipe)) | |
| return outputs | |
| ###################### | |
| ##### INTERFACE ###### | |
| ###################### | |
| def text_interface( | |
| pipe: pipeline, examples: list[str], output_label: str, title: str, desc: str | |
| ): | |
| return gr.Interface( | |
| fn=partial(cls_inference, pipe=pipe), | |
| inputs=[ | |
| gr.Textbox(lines=5, label="Input Text"), | |
| ], | |
| title=title, | |
| description=desc, | |
| outputs=[gr.Label(label=output_label)], | |
| examples=examples, | |
| allow_flagging="never", | |
| ) | |
| def search_interface( | |
| pipe: SentenceSimilarity, | |
| examples: list[str], | |
| output_label: str, | |
| title: str, | |
| desc: str, | |
| ): | |
| with gr.Blocks() as sentence_similarity_interface: | |
| gr.Markdown(title) | |
| gr.Markdown(desc) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_text = gr.Textbox(lines=5, label="Query") | |
| file_input = gr.File( | |
| label="Documents", file_types=[".txt"], file_count="multiple" | |
| ) | |
| button = gr.Button("Search...") | |
| output = gr.Label(output_label) | |
| button.click( | |
| fn=partial(sentence_similarity, pipe=pipe), | |
| inputs=[input_text, file_input], | |
| outputs=[output], | |
| ) | |
| return sentence_similarity_interface | |
| def token_classification_interface( | |
| pipe: pipeline, examples: list[str], output_label: str, title: str, desc: str | |
| ): | |
| return gr.Interface( | |
| fn=partial(tagging, pipe=pipe), | |
| inputs=[ | |
| gr.Textbox(placeholder="Masukan kalimat di sini...", label="Input Text"), | |
| ], | |
| outputs=[gr.HighlightedText(label=output_label)], | |
| title=title, | |
| examples=examples, | |
| description=desc, | |
| allow_flagging="never", | |
| ) | |
| def text_analysis_interface( | |
| pipe: list, examples: list[str], output_label: str, title: str, desc: str | |
| ): | |
| with gr.Blocks() as text_analysis_interface: | |
| gr.Markdown(title) | |
| gr.Markdown(desc) | |
| input_text = gr.Textbox(lines=5, label="Input Text") | |
| with gr.Row(): | |
| outputs = [ | |
| ( | |
| gr.HighlightedText(label=label) | |
| if isinstance( | |
| p, pipelines.token_classification.TokenClassificationPipeline | |
| ) | |
| else gr.Label(label=label) | |
| ) | |
| for label, p in zip(output_label, pipe) | |
| ] | |
| btn = gr.Button("Analyze") | |
| btn.click( | |
| fn=partial(text_analysis, pipes=pipe), | |
| inputs=[input_text], | |
| outputs=outputs, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=input_text, | |
| outputs=outputs, | |
| ) | |
| return text_analysis_interface | |
| # Summary | |
| # summary_interface = gr.Interface.from_pipeline( | |
| # pipes["summarization"], | |
| # title="Summarization", | |
| # examples=details["summarization"]["examples"], | |
| # description=details["summarization"]["description"], | |
| # allow_flagging="never", | |
| # ) | |