Spaces:
Running
Running
File size: 3,382 Bytes
9608158 b79a53d 9608158 03278d0 9608158 b79a53d 9608158 b79a53d 9608158 b79a53d 9608158 03278d0 b79a53d 9608158 b79a53d 9608158 b79a53d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import base64
import io
import cv2
import numpy as np
import torch
from fastapi import FastAPI
from fastapi.responses import FileResponse
from pydantic import BaseModel
from PIL import Image
import segmentation_models_pytorch as smp
from huggingface_hub import hf_hub_download
# --- CONFIGURATION ---
HF_MODEL_REPO_ID = "LeafNet75/Leaf-Annotate-v2"
DEVICE = "cpu"
IMG_SIZE = 256
CONFIDENCE_THRESHOLD = 0.298
# --- DATA MODELS FOR API ---
class InferenceRequest(BaseModel):
image: str
scribble_mask: str
class InferenceResponse(BaseModel):
predicted_mask: str
# --- INITIALIZE FASTAPI APP ---
app = FastAPI()
# --- LOAD MODEL ON STARTUP ---
def load_model():
print(f"Loading model '{HF_MODEL_REPO_ID}'...")
try:
model_path = hf_hub_download(repo_id=HF_MODEL_REPO_ID, filename="best_model.pth")
except Exception as e:
# Fallback for local testing if the model file is in the same directory
if os.path.exists("best_model.pth"):
print("Could not download from Hub, using local 'best_model.pth'.")
model_path = "best_model.pth"
else:
raise e
model = smp.Unet(
encoder_name="mobilenet_v2",
encoder_weights=None,
in_channels=4,
classes=1,
)
model.load_state_dict(torch.load(model_path, map_location=DEVICE))
model.to(DEVICE)
model.eval()
print("Model loaded successfully.")
return model
model = load_model()
# --- HELPER FUNCTIONS ---
def base64_to_cv2_rgba(base64_string: str):
header, encoded = base64_string.split(",", 1)
img_data = base64.b64decode(encoded)
pil_image = Image.open(io.BytesIO(img_data))
return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGBA2BGRA)
def cv2_to_base64(image: np.ndarray):
_, buffer = cv2.imencode('.png', image)
png_as_text = base64.b64encode(buffer).decode('utf-8')
return f"data:image/png;base64,{png_as_text}"
# --- API ENDPOINTS ---
@app.get("/")
def read_root():
return FileResponse('index.html')
@app.post("/predict", response_model=InferenceResponse)
async def predict(request: InferenceRequest):
image_cv = base64_to_cv2_rgba(request.image)
scribble_cv = base64_to_cv2_rgba(request.scribble_mask)
if len(scribble_cv.shape) > 2 and scribble_cv.shape[2] > 1:
scribble_cv = cv2.cvtColor(scribble_cv, cv2.COLOR_BGRA2GRAY)
h, w, _ = image_cv.shape
image_resized = cv2.resize(cv2.cvtColor(image_cv, cv2.COLOR_BGRA2RGB), (IMG_SIZE, IMG_SIZE), interpolation=cv2.INTER_AREA)
scribble_resized = cv2.resize(scribble_cv, (IMG_SIZE, IMG_SIZE), interpolation=cv2.INTER_NEAREST)
image_tensor = torch.from_numpy(image_resized.astype(np.float32)).permute(2, 0, 1) / 255.0
scribble_tensor = torch.from_numpy(scribble_resized.astype(np.float32)).unsqueeze(0) / 255.0
input_tensor = torch.cat([image_tensor, scribble_tensor], dim=0).unsqueeze(0).to(DEVICE)
with torch.no_grad():
output = model(input_tensor)
probs = torch.sigmoid(output)
binary_mask = (probs > CONFIDENCE_THRESHOLD).float().squeeze().cpu().numpy()
output_mask_resized = cv2.resize(binary_mask, (w, h), interpolation=cv2.INTER_NEAREST)
output_mask_uint8 = (output_mask_resized * 255).astype(np.uint8)
result_base64 = cv2_to_base64(output_mask_uint8)
return InferenceResponse(predicted_mask=result_base64) |