File size: 7,950 Bytes
f76da22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# app.py
import os
import gradio as gr
import torch
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import einops

from huggingface_hub import snapshot_download
from visionts import VisionTSpp, freq_to_seasonality_list

# ========================
# 配置
# ========================
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
REPO_ID = "Lefei/VisionTSpp"
LOCAL_DIR = "./hf_models/VisionTSpp"
CKPT_PATH = os.path.join(LOCAL_DIR, "visiontspp_model.ckpt")

ARCH = 'mae_base'  # 可选: 'mae_base', 'mae_large', 'mae_huge'

# 下载模型(Space 构建时执行一次)
if not os.path.exists(CKPT_PATH):
    os.makedirs(LOCAL_DIR, exist_ok=True)
    print("Downloading model from Hugging Face Hub...")
    snapshot_download(repo_id=REPO_ID, local_dir=LOCAL_DIR, local_dir_use_symlinks=False)

# 加载模型(全局加载一次)
model = VisionTSpp(
    ARCH,
    ckpt_path=CKPT_PATH,
    quantile=True,
    clip_input=True,
    complete_no_clip=False,
    color=True
).to(DEVICE)
print(f"Model loaded on {DEVICE}")

# ========================
# 核心预测与可视化函数
# ========================

def visual_ts(true, preds=None, lookback_len_visual=300, pred_len=96):
    """
    可视化真实值 vs 预测值
    true: [T, nvars]
    preds: [T, nvars],与 true 对齐
    """
    if isinstance(true, torch.Tensor):
        true = true.cpu().numpy()
    if isinstance(preds, torch.Tensor):
        preds = preds.cpu().numpy()

    nvars = true.shape[1]

    FIG_WIDTH = 12
    FIG_HEIGHT_PER_VAR = 1.8
    FONT_S = 10

    fig, axes = plt.subplots(
        nrows=nvars, ncols=1, figsize=(FIG_WIDTH, nvars * FIG_HEIGHT_PER_VAR), sharex=True,
        gridspec_kw={'height_ratios': [1] * nvars}
    )
    if nvars == 1:
        axes = [axes]

    lookback_len = true.shape[0] - pred_len

    for i, ax in enumerate(axes):
        ax.plot(true[:, i], label='Ground Truth', color='gray', linewidth=1.8)
        if preds is not None:
            ax.plot(np.arange(lookback_len, len(true)), preds[lookback_len:, i],
                    label='Prediction (Median)', color='blue', linewidth=1.8)

        # 分隔线
        y_min, y_max = ax.get_ylim()
        ax.vlines(x=lookback_len, ymin=y_min, ymax=y_max,
                  colors='gray', linestyles='--', alpha=0.7, linewidth=1)

        ax.set_yticks([])
        ax.set_xticks([])
        ax.text(0.005, 0.8, f'Var {i+1}', transform=ax.transAxes, fontsize=FONT_S, weight='bold')

    # 图例
    if preds is not None:
        handles, labels = axes[0].get_legend_handles_labels()
        fig.legend(handles, labels, loc='upper right', bbox_to_anchor=(0.9, 0.9), prop={'size': FONT_S})

    # 计算 MSE/MAE
    if preds is not None:
        true_eval = true[-pred_len:]
        pred_eval = preds[-pred_len:]
        mse = np.mean((true_eval - pred_eval) ** 2)
        mae = np.mean(np.abs(true_eval - pred_eval))
        fig.suptitle(f'MSE: {mse:.4f}, MAE: {mae:.4f}', fontsize=12, y=0.95)

    plt.subplots_adjust(hspace=0)
    return fig  # 返回 matplotlib figure


def predict_and_visualize(df, context_len=960, pred_len=394, freq="15Min"):
    """
    输入: df (pandas.DataFrame),必须包含 'date' 列和其他数值列
    输出: matplotlib 图像
    """
    if 'date' in df.columns:
        df['date'] = pd.to_datetime(df['date'])
        df = df.set_index('date')
    else:
        # 如果没有 date 列,假设是纯数值序列
        df = df.copy()

    data = df.values  # [T, nvars]
    nvars = data.shape[1]

    if data.shape[0] < context_len + pred_len:
        raise ValueError(f"数据太短,至少需要 {context_len + pred_len} 行,当前只有 {data.shape[0]} 行。")

    # 归一化(使用训练集前 70% 的统计量)
    train_len = int(len(data) * 0.7)
    x_mean = data[:train_len].mean(axis=0, keepdims=True)
    x_std = data[:train_len].std(axis=0, keepdims=True) + 1e-8
    data_norm = (data - x_mean) / x_std

    # 取最后一段作为测试窗口
    end_idx = len(data_norm)
    start_idx = end_idx - (context_len + pred_len)
    x = data_norm[start_idx:start_idx + context_len]  # [context_len, nvars]
    y_true = data_norm[start_idx + context_len:end_idx]  # [pred_len, nvars]

    # 设置周期性
    periodicity_list = freq_to_seasonality_list(freq)
    periodicity = periodicity_list[0] if periodicity_list else 1
    color_list = [i % 3 for i in range(nvars)]  # RGB 循环着色

    # 更新模型配置
    model.update_config(
        context_len=context_len,
        pred_len=pred_len,
        periodicity=periodicity,
        num_patch_input=7,
        padding_mode='constant'
    )

    # 转为 tensor
    x_tensor = torch.FloatTensor(x).unsqueeze(0).to(DEVICE)  # [1, T, N]
    y_true_tensor = torch.FloatTensor(y_true).unsqueeze(0).to(DEVICE)

    # 预测
    with torch.no_grad():
        y_pred, _, _, _, _ = model.forward(x_tensor, export_image=True, color_list=color_list)
        y_pred_median = y_pred[0]  # median prediction

    # 反归一化
    y_true_original = y_true * x_std + x_mean
    y_pred_original = y_pred_median[0].cpu().numpy() * x_std + x_mean

    # 构造完整序列用于可视化
    full_true = np.concatenate([x * x_std + x_mean, y_true_original], axis=0)
    full_pred = np.concatenate([x * x_std + x_mean, y_pred_original], axis=0)

    # 可视化
    fig = visual_ts(true=full_true, preds=full_pred, lookback_len_visual=context_len, pred_len=pred_len)
    return fig


# ========================
# 默认数据加载
# ========================
def load_default_data():
    data_path = "./datasets/ETTm1.csv"
    if not os.path.exists(data_path):
        os.makedirs("./datasets", exist_ok=True)
        url = "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTm1.csv"
        df = pd.read_csv(url)
        df.to_csv(data_path, index=False)
    else:
        df = pd.read_csv(data_path)
    return df


# ========================
# Gradio 界面
# ========================
def run_forecast(file_input, context_len, pred_len, freq):
    if file_input is not None:
        df = pd.read_csv(file_input.name)
        title = "Uploaded Data Prediction"
    else:
        df = load_default_data()
        title = "Default ETTm1 Dataset Prediction"

    try:
        fig = predict_and_visualize(df, context_len=int(context_len), pred_len=int(pred_len), freq=freq)
        fig.suptitle(title, fontsize=14, y=0.98)
        plt.close(fig)  # 防止重复显示
        return fig
    except Exception as e:
        # 返回错误信息图像
        fig, ax = plt.subplots()
        ax.text(0.5, 0.5, f"Error: {str(e)}", ha='center', va='center', wrap=True)
        ax.axis('off')
        plt.close(fig)
        return fig


# Gradio UI
with gr.Blocks(title="VisionTS++ 时间序列预测") as demo:
    gr.Markdown("# 🕰️ VisionTS++ 时间序列预测平台")
    gr.Markdown("上传你的多变量时间序列 CSV 文件,或使用默认 ETTm1 数据进行预测。")

    with gr.Row():
        file_input = gr.File(label="上传 CSV 文件(含 date 列或纯数值)", file_types=['.csv'])
        with gr.Column():
            context_len = gr.Number(label="历史长度 (context_len)", value=960)
            pred_len = gr.Number(label="预测长度 (pred_len)", value=394)
            freq = gr.Textbox(label="时间频率 (如 15Min, H)", value="15Min")

    btn = gr.Button("🚀 开始预测")

    output_plot = gr.Plot(label="预测结果")

    btn.click(
        fn=run_forecast,
        inputs=[file_input, context_len, pred_len, freq],
        outputs=output_plot
    )

    # 示例:使用默认数据
    gr.Examples(
        examples=[
            [None, 960, 394, "15Min"]
        ],
        inputs=[file_input, context_len, pred_len, freq],
        outputs=output_plot,
        fn=run_forecast,
        label="点击运行默认示例"
    )

# 启动
if __name__ == "__main__":
    demo.launch()