Spaces:
Running
Running
File size: 16,283 Bytes
f76da22 ead362b f76da22 4d14e5a f76da22 ead362b f76da22 ead362b f76da22 ead362b f76da22 ead362b 4d14e5a c1f4164 ead362b c1f4164 ead362b c1f4164 ead362b c1f4164 ead362b c1f4164 ead362b c1f4164 f76da22 ead362b f76da22 ead362b 4d14e5a ead362b 4d14e5a ead362b 4d14e5a ead362b 4d14e5a ead362b 4d14e5a ead362b f76da22 ead362b f76da22 ead362b c1f4164 ead362b c1f4164 f76da22 ead362b c1f4164 ead362b c1f4164 f76da22 ead362b f76da22 c1f4164 ead362b 4d14e5a f76da22 4d14e5a ead362b 4d14e5a c1f4164 ead362b c1f4164 4d14e5a ead362b c1f4164 ead362b f76da22 c1f4164 ead362b c1f4164 ead362b f76da22 c1f4164 4d14e5a ead362b f76da22 ead362b f76da22 ead362b 4d14e5a ead362b f76da22 ead362b f76da22 4d14e5a f76da22 ead362b 4d14e5a ead362b c1f4164 ead362b c1f4164 4d14e5a c1f4164 f76da22 ead362b c1f4164 ead362b f76da22 c1f4164 f76da22 ead362b f76da22 c1f4164 ead362b c1f4164 ead362b c1f4164 f76da22 c1f4164 f76da22 ead362b c1f4164 ead362b 4d14e5a f76da22 ead362b c1f4164 ead362b f76da22 ead362b c1f4164 ead362b c1f4164 ead362b 4d14e5a ead362b 4d14e5a ead362b 4d14e5a ead362b c1f4164 ead362b 4d14e5a ead362b 4d14e5a ead362b c1f4164 ead362b 4d14e5a ead362b f76da22 ead362b f76da22 ead362b f76da22 ead362b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
# app.py
import os
import gradio as gr
import torch
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import einops
from huggingface_hub import snapshot_download
from visionts import VisionTSpp, freq_to_seasonality_list
# ========================
# 1. Configuration
# ========================
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
REPO_ID = "Lefei/VisionTSpp"
LOCAL_DIR = "./hf_models/VisionTSpp"
CKPT_PATH = os.path.join(LOCAL_DIR, "visiontspp_model.ckpt")
ARCH = 'mae_base'
# Download the model from Hugging Face Hub
if not os.path.exists(CKPT_PATH):
os.makedirs(LOCAL_DIR, exist_ok=True)
print("Downloading model from Hugging Face Hub...")
snapshot_download(repo_id=REPO_ID, local_dir=LOCAL_DIR, local_dir_use_symlinks=False)
# Load the model
# NOTE: We assume the model was trained to predict these specific quantiles
QUANTILES = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
model = VisionTSpp(
ARCH,
ckpt_path=CKPT_PATH,
quantiles=QUANTILES, # Set the quantiles the model should predict
clip_input=True,
complete_no_clip=False,
color=True
).to(DEVICE)
print(f"Model loaded on {DEVICE}")
# Image normalization constants
imagenet_mean = np.array([0.485, 0.456, 0.406])
imagenet_std = np.array([0.229, 0.224, 0.225])
# ========================
# 2. Preset Datasets
# ========================
PRESET_DATASETS = {
"ETTm1 (15-min)": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTm1.csv",
"ETTh1 (1-hour)": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh1.csv",
"Illness": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/illness.csv",
"Weather": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/weather.csv"
}
# Local cache path for presets
PRESET_DIR = "./preset_data"
os.makedirs(PRESET_DIR, exist_ok=True)
def load_preset_data(name):
"""Loads a preset dataset, caching it locally."""
url = PRESET_DATASETS[name]
# Sanitize name for file path
sanitized_name = name.split(' ')[0]
path = os.path.join(PRESET_DIR, f"{sanitized_name}.csv")
if not os.path.exists(path):
print(f"Downloading preset dataset: {name}...")
df = pd.read_csv(url)
df.to_csv(path, index=False)
else:
df = pd.read_csv(path)
return df
# ========================
# 3. Visualization Functions
# ========================
def show_image_tensor(image_tensor, title='', cur_nvars=1, cur_color_list=None):
"""
Visualizes a tensor as an image, handling un-normalization.
Returns a matplotlib Figure object for Gradio.
"""
if image_tensor is None: return None
# image_tensor is [C, H, W] but we expect [H, W, C] for imshow
# The model outputs [1, 1, C, H, W], after indexing it's [C, H, W]
image = image_tensor.permute(1, 2, 0).cpu() # H, W, C
cur_image = torch.zeros_like(image)
height_per_var = image.shape[0] // cur_nvars
# Assign colors to variables for visualization
for i in range(cur_nvars):
cur_color_idx = cur_color_list[i]
var_slice = image[i*height_per_var:(i+1)*height_per_var, :, :]
# Un-normalize only the used color channel
unnormalized_channel = var_slice[:, :, cur_color_idx] * imagenet_std[cur_color_idx] + imagenet_mean[cur_color_idx]
cur_image[i*height_per_var:(i+1)*height_per_var, :, cur_color_idx] = unnormalized_channel * 255
cur_image = torch.clamp(cur_image, 0, 255).int().numpy()
fig, ax = plt.subplots(figsize=(6, 6))
ax.imshow(cur_image)
ax.set_title(title, fontsize=14)
ax.axis('off')
plt.tight_layout()
plt.close(fig) # Close to prevent double display
return fig
def visual_ts_with_quantiles(true_data, pred_median, pred_quantiles_list, model_quantiles, context_len, pred_len):
"""
Visualizes time series with multiple quantile bands.
pred_quantiles_list: list of tensors, one for each quantile.
model_quantiles: The list of quantiles values, e.g., [0.1, 0.2, ..., 0.9].
"""
if isinstance(true_data, torch.Tensor): true_data = true_data.cpu().numpy()
if isinstance(pred_median, torch.Tensor): pred_median = pred_median.cpu().numpy()
for i, q in enumerate(pred_quantiles_list):
if isinstance(q, torch.Tensor):
pred_quantiles_list[i] = q.cpu().numpy()
nvars = true_data.shape[1]
FIG_WIDTH = 15
FIG_HEIGHT_PER_VAR = 2.0
fig, axes = plt.subplots(nvars, 1, figsize=(FIG_WIDTH, nvars * FIG_HEIGHT_PER_VAR), sharex=True)
if nvars == 1: axes = [axes]
# Combine quantiles and predictions
sorted_quantiles = sorted(zip(model_quantiles, pred_quantiles_list + [pred_median]), key=lambda x: x[0])
# Filter out the median to get pairs for bands
quantile_preds = [item[1] for item in sorted_quantiles if item[0] != 0.5]
quantile_vals = [item[0] for item in sorted_quantiles if item[0] != 0.5]
num_bands = len(quantile_preds) // 2
# Colors from light to dark for bands from widest to narrowest
quantile_colors = plt.cm.Blues(np.linspace(0.3, 0.8, num_bands))[::-1]
for i, ax in enumerate(axes):
# Plot ground truth and median prediction
ax.plot(true_data[:, i], label='Ground Truth', color='black', linewidth=1.5)
pred_range = np.arange(context_len, context_len + pred_len)
ax.plot(pred_range, pred_median[:, i], label='Prediction (Median)', color='red', linewidth=1.5)
# Plot quantile bands
for j in range(num_bands):
lower_quantile_pred = quantile_preds[j][:, i]
upper_quantile_pred = quantile_preds[-(j+1)][:, i]
q_low = quantile_vals[j]
q_high = quantile_vals[-(j+1)]
ax.fill_between(
pred_range, lower_quantile_pred, upper_quantile_pred,
color=quantile_colors[j], alpha=0.7,
label=f'{int(q_low*100)}-{int(q_high*100)}% Quantile'
)
y_min, y_max = ax.get_ylim()
ax.vlines(x=context_len, ymin=y_min, ymax=y_max, colors='gray', linestyles='--', alpha=0.7)
ax.set_ylabel(f'Var {i+1}', rotation=0, labelpad=30, ha='right', va='center')
ax.grid(True, which='both', linestyle='--', linewidth=0.5)
ax.margins(x=0)
handles, labels = axes[0].get_legend_handles_labels()
# Create a unique legend
unique_labels = dict(zip(labels, handles))
fig.legend(unique_labels.values(), unique_labels.keys(), loc='upper center', bbox_to_anchor=(0.5, 1.05), ncol=num_bands + 2)
plt.tight_layout(rect=[0, 0, 1, 0.95])
plt.close(fig)
return fig
# ========================
# 4. Prediction Logic
# ========================
class PredictionResult:
"""A data class to hold prediction results for easier handling."""
def __init__(self, ts_fig, input_img_fig, recon_img_fig, csv_path, total_samples):
self.ts_fig = ts_fig
self.input_img_fig = input_img_fig
self.recon_img_fig = recon_img_fig
self.csv_path = csv_path
self.total_samples = total_samples
def predict_at_index(df, index, context_len, pred_len, freq):
"""Performs a full prediction cycle for a given sample index."""
# === Data Validation ===
if 'date' not in df.columns:
raise gr.Error("β Input CSV must contain a 'date' column.")
try:
df['date'] = pd.to_datetime(df['date'])
except Exception:
raise gr.Error("β The 'date' column could not be parsed. Please check the date format (e.g., YYYY-MM-DD HH:MM:SS).")
df = df.sort_values('date').set_index('date')
data = df.select_dtypes(include=np.number).values
nvars = data.shape[1]
total_samples = len(data) - context_len - pred_len + 1
if total_samples <= 0:
raise gr.Error(f"Data is too short. It needs at least {context_len + pred_len} rows, but has {len(data)}.")
# Clamp index to valid range, defaulting to the last sample
index = max(0, min(index, total_samples - 1))
# Normalize data (simple train/test split for mean/std)
train_len = int(len(data) * 0.7)
x_mean = data[:train_len].mean(axis=0, keepdims=True)
x_std = data[:train_len].std(axis=0, keepdims=True) + 1e-8
data_norm = (data - x_mean) / x_std
# Get data for the selected sample
start_idx = index
x_norm = data_norm[start_idx : start_idx + context_len]
y_true_norm = data_norm[start_idx + context_len : start_idx + context_len + pred_len]
x_tensor = torch.FloatTensor(x_norm).unsqueeze(0).to(DEVICE)
# Configure model and run prediction
periodicity_list = freq_to_seasonality_list(freq)
periodicity = periodicity_list[0] if periodicity_list else 1
color_list = [i % 3 for i in range(nvars)]
model.update_config(context_len=context_len, pred_len=pred_len, periodicity=periodicity)
with torch.no_grad():
y_pred, input_image, reconstructed_image, _, _ = model.forward(
x_tensor, export_image=True, color_list=color_list
)
# The model returns a list of all quantile predictions including the median
# The order depends on the model's internal quantile list
# Let's separate median (0.5) from other quantiles
all_preds = dict(zip(model.quantiles, y_pred))
pred_median_norm = all_preds.pop(0.5)[0] # Shape [pred_len, nvars]
pred_quantiles_norm = list(all_preds.values())
pred_quantiles_norm = [q[0] for q in pred_quantiles_norm] # List of [pred_len, nvars]
# Un-normalize results
y_true = y_true_norm * x_std + x_mean
pred_median = pred_median_norm.cpu().numpy() * x_std + x_mean
pred_quantiles = [q.cpu().numpy() * x_std + x_mean for q in pred_quantiles_norm]
# Create full series for plotting
full_true_context = data[start_idx : start_idx + context_len]
full_true_series = np.concatenate([full_true_context, y_true], axis=0)
# === Visualization ===
ts_fig = visual_ts_with_quantiles(
true_data=full_true_series,
pred_median=pred_median,
pred_quantiles_list=pred_quantiles,
model_quantiles=list(all_preds.keys()), # Quantiles without median
context_len=context_len,
pred_len=pred_len
)
input_img_fig = show_image_tensor(input_image[0, 0], f'Input Image (Sample {index})', nvars, color_list)
recon_img_fig = show_image_tensor(reconstructed_image[0, 0], 'Reconstructed Image', nvars, color_list)
# === Save CSV ===
os.makedirs("outputs", exist_ok=True)
csv_path = "outputs/prediction_result.csv"
time_index = df.index[start_idx + context_len : start_idx + context_len + pred_len]
result_data = {'date': time_index}
for i in range(nvars):
result_data[f'True_Var{i+1}'] = y_true[:, i]
result_data[f'Pred_Median_Var{i+1}'] = pred_median[:, i]
result_df = pd.DataFrame(result_data)
result_df.to_csv(csv_path, index=False)
return PredictionResult(ts_fig, input_img_fig, recon_img_fig, csv_path, total_samples)
# ========================
# 5. Gradio Interface
# ========================
def run_forecast(data_source, upload_file, index, context_len, pred_len, freq):
"""Wrapper function for the Gradio interface."""
if data_source == "Upload CSV":
if upload_file is None:
raise gr.Error("Please upload a CSV file when 'Upload CSV' is selected.")
df = pd.read_csv(upload_file.name)
else:
df = load_preset_data(data_source)
try:
# Cast inputs to correct types
index, context_len, pred_len = int(index), int(context_len), int(pred_len)
result = predict_at_index(df, index, context_len, pred_len, freq)
# On the first run, set the slider to the last sample
if index >= result.total_samples:
final_index = result.total_samples - 1
else:
final_index = index
return (
result.ts_fig,
result.input_img_fig,
result.recon_img_fig,
result.csv_path,
gr.update(maximum=result.total_samples - 1, value=final_index) # Update slider
)
except Exception as e:
# Handle errors gracefully by displaying them
error_fig = plt.figure(figsize=(10, 5))
plt.text(0.5, 0.5, f"An error occurred:\n{str(e)}", ha='center', va='center', wrap=True, color='red', fontsize=12)
plt.axis('off')
plt.close(error_fig)
# Return empty plots and no file
return error_fig, None, None, None, gr.update()
# UI Layout
with gr.Blocks(title="VisionTS++ Advanced Forecasting Platform", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π°οΈ VisionTS++: Multivariate Time Series Forecasting")
gr.Markdown(
"""
An interactive platform to explore time series forecasting using the VisionTS++ model.
- β
**Select** from preset datasets or **upload** your own.
- β
**Visualize** predictions with multiple **quantile uncertainty bands**.
- β
**Inspect** the model's internal "image" representation of the time series.
- β
**Slide** through different samples of the dataset for real-time forecasting.
- β
**Download** the prediction results as a CSV file.
"""
)
with gr.Row():
with gr.Column(scale=1, min_width=300):
gr.Markdown("### 1. Data & Model Configuration")
data_source = gr.Dropdown(
label="Select Data Source",
choices=["ETTm1 (15-min)", "ETTh1 (1-hour)", "Illness", "Weather", "Upload CSV"],
value="ETTm1 (15-min)"
)
upload_file = gr.File(label="Upload CSV File", file_types=['.csv'], visible=False)
gr.Markdown(
"""
**Upload Rules:**
1. Must be a `.csv` file.
2. Must contain a time column named `date`.
"""
)
context_len = gr.Number(label="Context Length (History)", value=336)
pred_len = gr.Number(label="Prediction Length (Future)", value=96)
freq = gr.Textbox(label="Frequency (e.g., 15Min, H, D)", value="15Min")
run_btn = gr.Button("π Run Forecast", variant="primary")
gr.Markdown("### 2. Sample Selection")
# Set a high initial value to default to the last sample on first run.
sample_index = gr.Slider(label="Sample Index", minimum=0, maximum=1000, step=1, value=10000)
with gr.Column(scale=3):
gr.Markdown("### 3. Prediction Results")
ts_plot = gr.Plot(label="Time Series Forecast with Quantile Bands")
with gr.Row():
input_img_plot = gr.Plot(label="Input as Image")
recon_img_plot = gr.Plot(label="Reconstructed Image")
download_csv = gr.File(label="Download Prediction CSV")
# --- Event Handlers ---
# Show/hide upload button based on data source
def toggle_upload_visibility(choice):
return gr.update(visible=(choice == "Upload CSV"))
data_source.change(fn=toggle_upload_visibility, inputs=data_source, outputs=upload_file)
# Define the inputs and outputs for the forecast function
inputs = [data_source, upload_file, sample_index, context_len, pred_len, freq]
outputs = [ts_plot, input_img_plot, recon_img_plot, download_csv, sample_index]
# Trigger forecast on button click
run_btn.click(fn=run_forecast, inputs=inputs, outputs=outputs, api_name="run_forecast")
# Trigger forecast when the slider value changes
sample_index.release(fn=run_forecast, inputs=inputs, outputs=outputs, api_name="run_forecast_on_slide")
# Examples
gr.Examples(
examples=[
["ETTm1 (15-min)", None, 0, 336, 96, "15Min"],
["Illness", None, 0, 36, 24, "D"],
["Weather", None, 0, 96, 192, "H"]
],
inputs=[data_source, upload_file, sample_index, context_len, pred_len, freq],
fn=run_forecast, # The button click will trigger the run
outputs=outputs,
label="Click an example to load configuration, then click 'Run Forecast'"
)
demo.launch(debug=True)
|