Spaces:
Running
Running
| # app.py | |
| import os | |
| import gradio as gr | |
| import torch | |
| import numpy as np | |
| import pandas as pd | |
| import matplotlib.pyplot as plt | |
| import einops | |
| from huggingface_hub import snapshot_download | |
| from visionts import VisionTSpp, freq_to_seasonality_list | |
| # ======================== | |
| # 1. Configuration | |
| # ======================== | |
| DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| REPO_ID = "Lefei/VisionTSpp" | |
| LOCAL_DIR = "./hf_models/VisionTSpp" | |
| CKPT_PATH = os.path.join(LOCAL_DIR, "visiontspp_model.ckpt") | |
| ARCH = 'mae_base' | |
| # Download the model from Hugging Face Hub | |
| if not os.path.exists(CKPT_PATH): | |
| os.makedirs(LOCAL_DIR, exist_ok=True) | |
| print("Downloading model from Hugging Face Hub...") | |
| snapshot_download(repo_id=REPO_ID, local_dir=LOCAL_DIR, local_dir_use_symlinks=False) | |
| # Load the model | |
| # NOTE: We assume the model was trained to predict these specific quantiles | |
| QUANTILES = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] | |
| model = VisionTSpp( | |
| ARCH, | |
| ckpt_path=CKPT_PATH, | |
| quantiles=QUANTILES, # Set the quantiles the model should predict | |
| clip_input=True, | |
| complete_no_clip=False, | |
| color=True | |
| ).to(DEVICE) | |
| print(f"Model loaded on {DEVICE}") | |
| # Image normalization constants | |
| imagenet_mean = np.array([0.485, 0.456, 0.406]) | |
| imagenet_std = np.array([0.229, 0.224, 0.225]) | |
| # ======================== | |
| # 2. Preset Datasets | |
| # ======================== | |
| PRESET_DATASETS = { | |
| "ETTm1 (15-min)": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTm1.csv", | |
| "ETTh1 (1-hour)": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/ETT-small/ETTh1.csv", | |
| "Illness": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/illness.csv", | |
| "Weather": "https://raw.githubusercontent.com/zhouhaoyi/ETDataset/main/weather.csv" | |
| } | |
| # Local cache path for presets | |
| PRESET_DIR = "./preset_data" | |
| os.makedirs(PRESET_DIR, exist_ok=True) | |
| def load_preset_data(name): | |
| """Loads a preset dataset, caching it locally.""" | |
| url = PRESET_DATASETS[name] | |
| # Sanitize name for file path | |
| sanitized_name = name.split(' ')[0] | |
| path = os.path.join(PRESET_DIR, f"{sanitized_name}.csv") | |
| if not os.path.exists(path): | |
| print(f"Downloading preset dataset: {name}...") | |
| df = pd.read_csv(url) | |
| df.to_csv(path, index=False) | |
| else: | |
| df = pd.read_csv(path) | |
| return df | |
| # ======================== | |
| # 3. Visualization Functions | |
| # ======================== | |
| def show_image_tensor(image_tensor, title='', cur_nvars=1, cur_color_list=None): | |
| """ | |
| Visualizes a tensor as an image, handling un-normalization. | |
| Returns a matplotlib Figure object for Gradio. | |
| """ | |
| if image_tensor is None: return None | |
| # image_tensor is [C, H, W] but we expect [H, W, C] for imshow | |
| # The model outputs [1, 1, C, H, W], after indexing it's [C, H, W] | |
| image = image_tensor.permute(1, 2, 0).cpu() # H, W, C | |
| cur_image = torch.zeros_like(image) | |
| height_per_var = image.shape[0] // cur_nvars | |
| # Assign colors to variables for visualization | |
| for i in range(cur_nvars): | |
| cur_color_idx = cur_color_list[i] | |
| var_slice = image[i*height_per_var:(i+1)*height_per_var, :, :] | |
| # Un-normalize only the used color channel | |
| unnormalized_channel = var_slice[:, :, cur_color_idx] * imagenet_std[cur_color_idx] + imagenet_mean[cur_color_idx] | |
| cur_image[i*height_per_var:(i+1)*height_per_var, :, cur_color_idx] = unnormalized_channel * 255 | |
| cur_image = torch.clamp(cur_image, 0, 255).int().numpy() | |
| fig, ax = plt.subplots(figsize=(6, 6)) | |
| ax.imshow(cur_image) | |
| ax.set_title(title, fontsize=14) | |
| ax.axis('off') | |
| plt.tight_layout() | |
| plt.close(fig) # Close to prevent double display | |
| return fig | |
| def visual_ts_with_quantiles(true_data, pred_median, pred_quantiles_list, model_quantiles, context_len, pred_len): | |
| """ | |
| Visualizes time series with multiple quantile bands. | |
| pred_quantiles_list: list of tensors, one for each quantile. | |
| model_quantiles: The list of quantiles values, e.g., [0.1, 0.2, ..., 0.9]. | |
| """ | |
| if isinstance(true_data, torch.Tensor): true_data = true_data.cpu().numpy() | |
| if isinstance(pred_median, torch.Tensor): pred_median = pred_median.cpu().numpy() | |
| for i, q in enumerate(pred_quantiles_list): | |
| if isinstance(q, torch.Tensor): | |
| pred_quantiles_list[i] = q.cpu().numpy() | |
| nvars = true_data.shape[1] | |
| FIG_WIDTH = 15 | |
| FIG_HEIGHT_PER_VAR = 2.0 | |
| fig, axes = plt.subplots(nvars, 1, figsize=(FIG_WIDTH, nvars * FIG_HEIGHT_PER_VAR), sharex=True) | |
| if nvars == 1: axes = [axes] | |
| # Combine quantiles and predictions | |
| sorted_quantiles = sorted(zip(model_quantiles, pred_quantiles_list + [pred_median]), key=lambda x: x[0]) | |
| # Filter out the median to get pairs for bands | |
| quantile_preds = [item[1] for item in sorted_quantiles if item[0] != 0.5] | |
| quantile_vals = [item[0] for item in sorted_quantiles if item[0] != 0.5] | |
| num_bands = len(quantile_preds) // 2 | |
| # Colors from light to dark for bands from widest to narrowest | |
| quantile_colors = plt.cm.Blues(np.linspace(0.3, 0.8, num_bands))[::-1] | |
| for i, ax in enumerate(axes): | |
| # Plot ground truth and median prediction | |
| ax.plot(true_data[:, i], label='Ground Truth', color='black', linewidth=1.5) | |
| pred_range = np.arange(context_len, context_len + pred_len) | |
| ax.plot(pred_range, pred_median[:, i], label='Prediction (Median)', color='red', linewidth=1.5) | |
| # Plot quantile bands | |
| for j in range(num_bands): | |
| lower_quantile_pred = quantile_preds[j][:, i] | |
| upper_quantile_pred = quantile_preds[-(j+1)][:, i] | |
| q_low = quantile_vals[j] | |
| q_high = quantile_vals[-(j+1)] | |
| ax.fill_between( | |
| pred_range, lower_quantile_pred, upper_quantile_pred, | |
| color=quantile_colors[j], alpha=0.7, | |
| label=f'{int(q_low*100)}-{int(q_high*100)}% Quantile' | |
| ) | |
| y_min, y_max = ax.get_ylim() | |
| ax.vlines(x=context_len, ymin=y_min, ymax=y_max, colors='gray', linestyles='--', alpha=0.7) | |
| ax.set_ylabel(f'Var {i+1}', rotation=0, labelpad=30, ha='right', va='center') | |
| ax.grid(True, which='both', linestyle='--', linewidth=0.5) | |
| ax.margins(x=0) | |
| handles, labels = axes[0].get_legend_handles_labels() | |
| # Create a unique legend | |
| unique_labels = dict(zip(labels, handles)) | |
| fig.legend(unique_labels.values(), unique_labels.keys(), loc='upper center', bbox_to_anchor=(0.5, 1.05), ncol=num_bands + 2) | |
| plt.tight_layout(rect=[0, 0, 1, 0.95]) | |
| plt.close(fig) | |
| return fig | |
| # ======================== | |
| # 4. Prediction Logic | |
| # ======================== | |
| class PredictionResult: | |
| """A data class to hold prediction results for easier handling.""" | |
| def __init__(self, ts_fig, input_img_fig, recon_img_fig, csv_path, total_samples): | |
| self.ts_fig = ts_fig | |
| self.input_img_fig = input_img_fig | |
| self.recon_img_fig = recon_img_fig | |
| self.csv_path = csv_path | |
| self.total_samples = total_samples | |
| def predict_at_index(df, index, context_len, pred_len, freq): | |
| """Performs a full prediction cycle for a given sample index.""" | |
| # === Data Validation === | |
| if 'date' not in df.columns: | |
| raise gr.Error("β Input CSV must contain a 'date' column.") | |
| try: | |
| df['date'] = pd.to_datetime(df['date']) | |
| except Exception: | |
| raise gr.Error("β The 'date' column could not be parsed. Please check the date format (e.g., YYYY-MM-DD HH:MM:SS).") | |
| df = df.sort_values('date').set_index('date') | |
| data = df.select_dtypes(include=np.number).values | |
| nvars = data.shape[1] | |
| total_samples = len(data) - context_len - pred_len + 1 | |
| if total_samples <= 0: | |
| raise gr.Error(f"Data is too short. It needs at least {context_len + pred_len} rows, but has {len(data)}.") | |
| # Clamp index to valid range, defaulting to the last sample | |
| index = max(0, min(index, total_samples - 1)) | |
| # Normalize data (simple train/test split for mean/std) | |
| train_len = int(len(data) * 0.7) | |
| x_mean = data[:train_len].mean(axis=0, keepdims=True) | |
| x_std = data[:train_len].std(axis=0, keepdims=True) + 1e-8 | |
| data_norm = (data - x_mean) / x_std | |
| # Get data for the selected sample | |
| start_idx = index | |
| x_norm = data_norm[start_idx : start_idx + context_len] | |
| y_true_norm = data_norm[start_idx + context_len : start_idx + context_len + pred_len] | |
| x_tensor = torch.FloatTensor(x_norm).unsqueeze(0).to(DEVICE) | |
| # Configure model and run prediction | |
| periodicity_list = freq_to_seasonality_list(freq) | |
| periodicity = periodicity_list[0] if periodicity_list else 1 | |
| color_list = [i % 3 for i in range(nvars)] | |
| model.update_config(context_len=context_len, pred_len=pred_len, periodicity=periodicity) | |
| with torch.no_grad(): | |
| y_pred, input_image, reconstructed_image, _, _ = model.forward( | |
| x_tensor, export_image=True, color_list=color_list | |
| ) | |
| # The model returns a list of all quantile predictions including the median | |
| # The order depends on the model's internal quantile list | |
| # Let's separate median (0.5) from other quantiles | |
| all_preds = dict(zip(model.quantiles, y_pred)) | |
| pred_median_norm = all_preds.pop(0.5)[0] # Shape [pred_len, nvars] | |
| pred_quantiles_norm = list(all_preds.values()) | |
| pred_quantiles_norm = [q[0] for q in pred_quantiles_norm] # List of [pred_len, nvars] | |
| # Un-normalize results | |
| y_true = y_true_norm * x_std + x_mean | |
| pred_median = pred_median_norm.cpu().numpy() * x_std + x_mean | |
| pred_quantiles = [q.cpu().numpy() * x_std + x_mean for q in pred_quantiles_norm] | |
| # Create full series for plotting | |
| full_true_context = data[start_idx : start_idx + context_len] | |
| full_true_series = np.concatenate([full_true_context, y_true], axis=0) | |
| # === Visualization === | |
| ts_fig = visual_ts_with_quantiles( | |
| true_data=full_true_series, | |
| pred_median=pred_median, | |
| pred_quantiles_list=pred_quantiles, | |
| model_quantiles=list(all_preds.keys()), # Quantiles without median | |
| context_len=context_len, | |
| pred_len=pred_len | |
| ) | |
| input_img_fig = show_image_tensor(input_image[0, 0], f'Input Image (Sample {index})', nvars, color_list) | |
| recon_img_fig = show_image_tensor(reconstructed_image[0, 0], 'Reconstructed Image', nvars, color_list) | |
| # === Save CSV === | |
| os.makedirs("outputs", exist_ok=True) | |
| csv_path = "outputs/prediction_result.csv" | |
| time_index = df.index[start_idx + context_len : start_idx + context_len + pred_len] | |
| result_data = {'date': time_index} | |
| for i in range(nvars): | |
| result_data[f'True_Var{i+1}'] = y_true[:, i] | |
| result_data[f'Pred_Median_Var{i+1}'] = pred_median[:, i] | |
| result_df = pd.DataFrame(result_data) | |
| result_df.to_csv(csv_path, index=False) | |
| return PredictionResult(ts_fig, input_img_fig, recon_img_fig, csv_path, total_samples) | |
| # ======================== | |
| # 5. Gradio Interface | |
| # ======================== | |
| def run_forecast(data_source, upload_file, index, context_len, pred_len, freq): | |
| """Wrapper function for the Gradio interface.""" | |
| if data_source == "Upload CSV": | |
| if upload_file is None: | |
| raise gr.Error("Please upload a CSV file when 'Upload CSV' is selected.") | |
| df = pd.read_csv(upload_file.name) | |
| else: | |
| df = load_preset_data(data_source) | |
| try: | |
| # Cast inputs to correct types | |
| index, context_len, pred_len = int(index), int(context_len), int(pred_len) | |
| result = predict_at_index(df, index, context_len, pred_len, freq) | |
| # On the first run, set the slider to the last sample | |
| if index >= result.total_samples: | |
| final_index = result.total_samples - 1 | |
| else: | |
| final_index = index | |
| return ( | |
| result.ts_fig, | |
| result.input_img_fig, | |
| result.recon_img_fig, | |
| result.csv_path, | |
| gr.update(maximum=result.total_samples - 1, value=final_index) # Update slider | |
| ) | |
| except Exception as e: | |
| # Handle errors gracefully by displaying them | |
| error_fig = plt.figure(figsize=(10, 5)) | |
| plt.text(0.5, 0.5, f"An error occurred:\n{str(e)}", ha='center', va='center', wrap=True, color='red', fontsize=12) | |
| plt.axis('off') | |
| plt.close(error_fig) | |
| # Return empty plots and no file | |
| return error_fig, None, None, None, gr.update() | |
| # UI Layout | |
| with gr.Blocks(title="VisionTS++ Advanced Forecasting Platform", theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# π°οΈ VisionTS++: Multivariate Time Series Forecasting") | |
| gr.Markdown( | |
| """ | |
| An interactive platform to explore time series forecasting using the VisionTS++ model. | |
| - β **Select** from preset datasets or **upload** your own. | |
| - β **Visualize** predictions with multiple **quantile uncertainty bands**. | |
| - β **Inspect** the model's internal "image" representation of the time series. | |
| - β **Slide** through different samples of the dataset for real-time forecasting. | |
| - β **Download** the prediction results as a CSV file. | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1, min_width=300): | |
| gr.Markdown("### 1. Data & Model Configuration") | |
| data_source = gr.Dropdown( | |
| label="Select Data Source", | |
| choices=["ETTm1 (15-min)", "ETTh1 (1-hour)", "Illness", "Weather", "Upload CSV"], | |
| value="ETTm1 (15-min)" | |
| ) | |
| upload_file = gr.File(label="Upload CSV File", file_types=['.csv'], visible=False) | |
| gr.Markdown( | |
| """ | |
| **Upload Rules:** | |
| 1. Must be a `.csv` file. | |
| 2. Must contain a time column named `date`. | |
| """ | |
| ) | |
| context_len = gr.Number(label="Context Length (History)", value=336) | |
| pred_len = gr.Number(label="Prediction Length (Future)", value=96) | |
| freq = gr.Textbox(label="Frequency (e.g., 15Min, H, D)", value="15Min") | |
| run_btn = gr.Button("π Run Forecast", variant="primary") | |
| gr.Markdown("### 2. Sample Selection") | |
| # Set a high initial value to default to the last sample on first run. | |
| sample_index = gr.Slider(label="Sample Index", minimum=0, maximum=1000, step=1, value=10000) | |
| with gr.Column(scale=3): | |
| gr.Markdown("### 3. Prediction Results") | |
| ts_plot = gr.Plot(label="Time Series Forecast with Quantile Bands") | |
| with gr.Row(): | |
| input_img_plot = gr.Plot(label="Input as Image") | |
| recon_img_plot = gr.Plot(label="Reconstructed Image") | |
| download_csv = gr.File(label="Download Prediction CSV") | |
| # --- Event Handlers --- | |
| # Show/hide upload button based on data source | |
| def toggle_upload_visibility(choice): | |
| return gr.update(visible=(choice == "Upload CSV")) | |
| data_source.change(fn=toggle_upload_visibility, inputs=data_source, outputs=upload_file) | |
| # Define the inputs and outputs for the forecast function | |
| inputs = [data_source, upload_file, sample_index, context_len, pred_len, freq] | |
| outputs = [ts_plot, input_img_plot, recon_img_plot, download_csv, sample_index] | |
| # Trigger forecast on button click | |
| run_btn.click(fn=run_forecast, inputs=inputs, outputs=outputs, api_name="run_forecast") | |
| # Trigger forecast when the slider value changes | |
| sample_index.release(fn=run_forecast, inputs=inputs, outputs=outputs, api_name="run_forecast_on_slide") | |
| # Examples | |
| gr.Examples( | |
| examples=[ | |
| ["ETTm1 (15-min)", None, 0, 336, 96, "15Min"], | |
| ["Illness", None, 0, 36, 24, "D"], | |
| ["Weather", None, 0, 96, 192, "H"] | |
| ], | |
| inputs=[data_source, upload_file, sample_index, context_len, pred_len, freq], | |
| fn=run_forecast, # The button click will trigger the run | |
| outputs=outputs, | |
| label="Click an example to load configuration, then click 'Run Forecast'" | |
| ) | |
| demo.launch(debug=True) | |