Spaces:
Runtime error
Runtime error
| title: RAG Pipeline For LLMs | |
| emoji: ๐ | |
| colorFrom: blue | |
| colorTo: purple | |
| sdk: gradio | |
| sdk_version: 5.49.0 | |
| app_file: app.py | |
| pinned: false | |
| license: mit | |
| tags: | |
| - rag | |
| - question-answering | |
| - nlp | |
| - faiss | |
| - transformers | |
| - wikipedia | |
| - semantic-search | |
| - huggingface | |
| - sentence-transformers | |
| models: | |
| - sentence-transformers/all-mpnet-base-v2 | |
| - deepset/roberta-base-squad2 | |
| datasets: | |
| - wikipedia | |
| # ๐ RAG Pipeline For LLMs ๐ | |
| [](https://huggingface.co/spaces/Mehardeep7/rag-pipeline-llm) | |
| [](https://python.org) | |
| ## ๐ Project Overview | |
| An intelligent **Retrieval-Augmented Generation (RAG)** pipeline that combines semantic search with question-answering capabilities. This system fetches Wikipedia articles, processes them into searchable chunks, and uses state-of-the-art AI models to provide accurate, context-aware answers. | |
| ## โจ Key Features | |
| - ๐ **Dynamic Knowledge Retrieval** from Wikipedia with error handling | |
| - ๐งฎ **Semantic Search** using sentence transformers (no keyword dependency) | |
| - โก **Fast Vector Similarity** with FAISS indexing (sub-second search) | |
| - ๐ค **Intelligent Answer Generation** using pre-trained QA models | |
| - ๐ **Confidence Scoring** for answer quality assessment | |
| - ๐๏ธ **Customizable Parameters** (chunk size, retrieval count, overlap) | |
| - โ๏ธ **Smart Text Chunking** with overlapping segments for context preservation | |
| ## ๐๏ธ Architecture | |
| ``` | |
| User Query โ Embedding โ FAISS Search โ Retrieve Chunks โ QA Model โ Answer + Confidence | |
| ``` | |
| ## ๐ค AI Models Used | |
| - **๐ Text Chunking**: `sentence-transformers/all-mpnet-base-v2` tokenizer | |
| - **๐งฎ Vector Embeddings**: `sentence-transformers/all-mpnet-base-v2` (768-dimensional) | |
| - **โ Question Answering**: `deepset/roberta-base-squad2` (RoBERTa fine-tuned on SQuAD 2.0) | |
| - **๐ Vector Search**: FAISS IndexFlatL2 for L2 distance similarity | |
| ## ๐ How to Use | |
| 1. **๐ Process Article**: Enter any Wikipedia topic and configure chunk settings | |
| 2. **โ Ask Questions**: Switch to Q&A tab and enter your questions | |
| 3. **๐ View Results**: Explore answers with confidence scores and similarity metrics | |
| 4. **๐ Analyze**: Check retrieved context and visualization analytics | |
| ## ๐ก Example Usage | |
| ``` | |
| Topic: "Artificial Intelligence" | |
| Question: "What is machine learning?" | |
| Answer: "Machine learning is a subset of artificial intelligence..." | |
| Confidence: 89.7% | |
| ``` | |
| ## ๐ง Configuration Options | |
| - **Chunk Size**: 128-512 tokens (default: 256) | |
| - **Overlap**: 10-50 tokens (default: 20) | |
| - **Retrieval Count**: 1-10 chunks (default: 3) | |
| ## ๐ Performance | |
| - **Search Speed**: Sub-second retrieval for 1000+ chunks | |
| - **Accuracy**: High precision with confidence scoring | |
| - **Memory Efficient**: Optimized chunk sizes prevent token overflow | |
| ## ๐ Links | |
| - **๐ Full Project**: [GitHub Repository](https://github.com/Mehardeep79/RAG_Pipeline_LLM) | |
| - **๐ Jupyter Notebook**: Complete implementation with explanations | |
| - **๐ Streamlit App**: Alternative web interface | |
| ## ๐ค Credits | |
| Built with โค๏ธ using: | |
| - ๐ค **Hugging Face** for transformers and model hosting | |
| - โก **FAISS** for efficient vector search | |
| - ๐จ **Gradio** for the interactive interface | |
| - ๐ **Wikipedia API** for knowledge content | |
| --- | |
| **โญ If you find this useful, please give it a star on GitHub!** |