File size: 21,415 Bytes
58835e7
 
6426727
8ca115b
8ac347b
58835e7
 
8ca115b
2449cff
8ac347b
8ca115b
6426727
8ca115b
6426727
 
 
 
 
8ca115b
6426727
 
b2228a7
 
6426727
8ca115b
 
 
6426727
b2228a7
 
52c1994
8ca115b
6426727
8ca115b
843b297
8ca115b
843b297
 
6426727
8ca115b
6426727
 
 
 
 
 
843b297
8ac347b
 
 
 
 
 
8ca115b
 
6426727
 
 
 
 
 
 
 
 
 
843b297
6426727
843b297
 
 
 
 
 
 
 
 
 
6426727
 
843b297
6426727
 
8ca115b
 
 
 
 
 
 
b2228a7
 
8ca115b
b2228a7
 
8ca115b
 
 
b2228a7
8ca115b
 
8ac347b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2228a7
8ca115b
6426727
 
 
 
 
 
 
 
fa29cf2
843b297
6426727
8ac347b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2228a7
843b297
6426727
 
 
843b297
6426727
843b297
6426727
 
843b297
8ac347b
 
fa29cf2
6426727
843b297
 
6426727
843b297
6426727
843b297
 
 
6426727
8ca115b
 
 
 
 
 
 
b2228a7
 
8ca115b
 
 
 
 
 
 
 
 
 
8ac347b
b2228a7
 
 
8ca115b
8ac347b
8ca115b
 
b2228a7
 
8ac347b
b2228a7
 
8ac347b
b2228a7
8ac347b
 
 
 
 
 
 
 
 
 
8ca115b
 
8ac347b
8ca115b
8ac347b
 
8ca115b
 
 
 
 
 
 
 
 
 
 
 
 
 
6426727
 
843b297
b2228a7
 
 
8ca115b
 
 
 
843b297
6426727
843b297
8ac347b
 
6426727
8ac347b
 
843b297
8ca115b
 
 
b2228a7
8ca115b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6426727
 
 
 
fa29cf2
6426727
843b297
 
6426727
843b297
 
 
8ca115b
843b297
6426727
843b297
6426727
 
8ca115b
6426727
 
 
843b297
6426727
 
 
 
8ca115b
6426727
 
 
8ca115b
6426727
 
8ca115b
6426727
8ca115b
 
 
 
 
6426727
8ca115b
 
 
b2228a7
 
 
8ca115b
 
b2228a7
8ca115b
 
 
 
 
 
 
 
 
 
 
 
 
 
6426727
 
 
8ca115b
6426727
8ca115b
6426727
 
8ca115b
 
 
b2228a7
8ca115b
 
b2228a7
 
 
 
 
 
 
 
 
 
 
8ca115b
 
b2228a7
8ca115b
 
 
 
b2228a7
8ac347b
b2228a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ca115b
b2228a7
 
 
8ca115b
b2228a7
 
 
 
 
8ca115b
 
 
 
b2228a7
8ca115b
b2228a7
 
 
 
 
8ca115b
 
 
 
6426727
843b297
 
8ac347b
 
 
8ca115b
 
 
 
 
 
 
 
 
6426727
 
 
8ca115b
58835e7
6426727
 
 
 
 
 
 
2449cff
6426727
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
#!/usr/bin/env python3
"""
BackgroundFX Pro - CSP-Safe Application Entry Point
Now with: live background preview + sources: Preset / Upload / Gradient / AI Generate
(uses utils.cv_processing to avoid circular imports)
"""

import early_env  # <<< must be FIRST

import os, time
from typing import Optional, Dict, Any, Callable, Tuple

# 1) CSP-safe Gradio env
os.environ['GRADIO_ALLOW_FLAGGING'] = 'never'
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
os.environ['GRADIO_SERVER_NAME'] = '0.0.0.0'
os.environ['GRADIO_SERVER_PORT'] = '7860'

# 2) Gradio schema patch
try:
    import gradio_client.utils as gc_utils
    _orig_get_type = gc_utils.get_type
    def _patched_get_type(schema):
        if not isinstance(schema, dict):
            if isinstance(schema, bool): return "boolean"
            if isinstance(schema, str): return "string"
            if isinstance(schema, (int, float)): return "number"
            return "string"
        return _orig_get_type(schema)
    gc_utils.get_type = _patched_get_type
except Exception:
    pass

# 3) Logging early
from utils.logging_setup import setup_logging, make_logger
setup_logging(app_name="backgroundfx")
logger = make_logger("entrypoint")
logger.info("Entrypoint starting…")

# 4) Imports
from config.app_config import get_config
from utils.hardware.device_manager import DeviceManager
from utils.system.memory_manager import MemoryManager
from models.loaders.model_loader import ModelLoader
from processing.video.video_processor import CoreVideoProcessor, ProcessorConfig
from processing.audio.audio_processor import AudioProcessor

# ⛑️ Bring helpers from the slim, self-contained cv_processing (no circular imports)
from utils.cv_processing import (
    PROFESSIONAL_BACKGROUNDS,          # dict of presets
    validate_video_file,               # returns (ok, reason)
    create_professional_background,    # used for preview defaults
)

# 5) CSP-safe fallbacks for models
class CSPSafeSAM2:
    def set_image(self, image):
        self.shape = getattr(image, 'shape', (512, 512, 3))
    def predict(self, point_coords=None, point_labels=None, box=None, multimask_output=True, **kwargs):
        import numpy as np
        h, w = self.shape[:2] if hasattr(self, 'shape') else (512, 512)
        n = 3 if multimask_output else 1
        return np.ones((n, h, w), dtype=bool), np.array([0.9, 0.8, 0.7][:n]), np.ones((n, h, w), dtype=np.float32)

class CSPSafeMatAnyone:
    def step(self, image_tensor, mask_tensor=None, objects=None, first_frame_pred=False, **kwargs):
        import torch
        if hasattr(image_tensor, "shape"):
            if len(image_tensor.shape) == 3:
                _, H, W = image_tensor.shape
            elif len(image_tensor.shape) == 4:
                _, _, H, W = image_tensor.shape
            else:
                H, W = 256, 256
        else:
            H, W = 256, 256
        return torch.ones((1, 1, H, W))
    def output_prob_to_mask(self, output_prob):
        return (output_prob > 0.5).float()
    def process(self, image, mask, **kwargs):
        return mask

# ---------- helpers for UI ----------
import numpy as np
import cv2
from PIL import Image

PREVIEW_W, PREVIEW_H = 640, 360  # 16:9

def _hex_to_rgb(x: str) -> Tuple[int, int, int]:
    x = (x or "").strip()
    if x.startswith("#") and len(x) == 7:
        return tuple(int(x[i:i+2], 16) for i in (1, 3, 5))
    return (255, 255, 255)

def _np_to_pil(arr: np.ndarray) -> Image.Image:
    if arr.dtype != np.uint8:
        arr = arr.clip(0, 255).astype(np.uint8)
    return Image.fromarray(arr)

def _create_gradient_preview(spec: Dict[str, Any], width: int, height: int) -> np.ndarray:
    """Lightweight linear gradient (with rotation) for previews."""
    def _to_rgb(c):
        if isinstance(c, (list, tuple)) and len(c) == 3:
            return tuple(int(x) for x in c)
        if isinstance(c, str) and c.startswith("#") and len(c) == 7:
            return tuple(int(c[i:i+2], 16) for i in (1,3,5))
        return (255, 255, 255)
    start = _to_rgb(spec.get("start", "#222222"))
    end   = _to_rgb(spec.get("end", "#888888"))
    angle = float(spec.get("angle_deg", 0))

    bg = np.zeros((height, width, 3), np.uint8)
    for y in range(height):
        t = y / max(1, height - 1)
        r = int(start[0] * (1 - t) + end[0] * t)
        g = int(start[1] * (1 - t) + end[1] * t)
        b = int(start[2] * (1 - t) + end[2] * t)
        bg[y, :] = (r, g, b)
    if abs(angle) % 360 < 1e-6:
        return bg
    center = (width / 2, height / 2)
    rot = cv2.getRotationMatrix2D(center, angle, 1.0)
    return cv2.warpAffine(bg, rot, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)

# ---------- main app ----------
class VideoBackgroundApp:
    def __init__(self):
        self.config = get_config()
        self.device_mgr = DeviceManager()
        self.memory_mgr = MemoryManager(self.device_mgr.get_optimal_device())
        self.model_loader = ModelLoader(self.device_mgr, self.memory_mgr)
        self.audio_proc = AudioProcessor()
        self.models_loaded = False
        self.core_processor: Optional[CoreVideoProcessor] = None
        logger.info("VideoBackgroundApp initialized (device=%s)", self.device_mgr.get_optimal_device())

    def _build_processor_config_safely(self) -> ProcessorConfig:
        """
        Build ProcessorConfig including stability knobs if supported by your installed CoreVideoProcessor.
        If your version doesn't have those fields, we auto-filter them out to avoid TypeError.
        """
        # Desired config (includes stability + encoding)
        desired: Dict[str, Any] = dict(
            background_preset="office",
            write_fps=None,
            max_model_size=1280,
            # --- stability knobs (only used if supported in your CoreVideoProcessor) ---
            temporal_ema_alpha=0.75,  # 0.6–0.85 typical
            min_iou_to_accept=0.05,   # reject sudden mask jumps
            dilate_px=6,              # pad edges for hair/ears
            edge_blur_px=2,           # calm shimmering edges
            # --- encoding (NVENC + fallbacks used inside the processor you installed) ---
            use_nvenc=True,
            nvenc_codec="h264",
            nvenc_preset="p5",
            nvenc_cq=18,
            nvenc_tune_hq=True,
            nvenc_pix_fmt="yuv420p",
        )

        # Filter against dataclass fields if present
        fields = getattr(ProcessorConfig, "__dataclass_fields__", None)
        if isinstance(fields, dict):
            filtered = {k: v for k, v in desired.items() if k in fields}
        else:
            # very old ProcessorConfig: just pass the common ones
            filtered = {
                "background_preset": desired["background_preset"],
                "write_fps": desired["write_fps"],
                "max_model_size": desired["max_model_size"],
                "use_nvenc": desired["use_nvenc"],
                "nvenc_codec": desired["nvenc_codec"],
                "nvenc_preset": desired["nvenc_preset"],
                "nvenc_cq": desired["nvenc_cq"],
                "nvenc_tune_hq": desired["nvenc_tune_hq"],
                "nvenc_pix_fmt": desired["nvenc_pix_fmt"],
            }

        try:
            return ProcessorConfig(**filtered)
        except TypeError:
            # final safety: pass minimal args
            return ProcessorConfig(
                background_preset="office",
                write_fps=None,
                max_model_size=1280,
                use_nvenc=True,
                nvenc_codec="h264",
                nvenc_preset="p5",
                nvenc_cq=18,
                nvenc_tune_hq=True,
                nvenc_pix_fmt="yuv420p",
            )

    def load_models(self, progress_callback: Optional[Callable] = None) -> str:
        logger.info("Loading models (CSP-safe)…")
        try:
            sam2, matanyone = self.model_loader.load_all_models(progress_callback=progress_callback)
        except Exception as e:
            logger.warning("Model loading failed (%s) - Using CSP-safe fallbacks", e)
            sam2, matanyone = None, None

        sam2_model = getattr(sam2, "model", sam2) if sam2 else CSPSafeSAM2()
        matanyone_model = getattr(matanyone, "model", matanyone) if matanyone else CSPSafeMatAnyone()

        cfg = self._build_processor_config_safely()

        self.core_processor = CoreVideoProcessor(config=cfg, models=None)
        self.core_processor.models = type('FakeModelManager', (), {
            'get_sam2': lambda self_: sam2_model,
            'get_matanyone': lambda self_: matanyone_model
        })()

        self.models_loaded = True
        logger.info("Models ready (SAM2=%s, MatAnyOne=%s)",
                    type(sam2_model).__name__, type(matanyone_model).__name__)
        return "Models loaded (CSP-safe; fallbacks in use if actual AI models failed)."

    # ---- PREVIEWS ----
    def preview_preset(self, preset_key: str) -> Image.Image:
        key = preset_key if preset_key in PROFESSIONAL_BACKGROUNDS else "office"
        bg = create_professional_background(key, PREVIEW_W, PREVIEW_H)  # RGB
        return _np_to_pil(bg)

    def preview_upload(self, file) -> Optional[Image.Image]:
        if file is None:
            return None
        try:
            img = Image.open(file.name).convert("RGB")
            img = img.resize((PREVIEW_W, PREVIEW_H), Image.LANCZOS)
            return img
        except Exception as e:
            logger.warning("Upload preview failed: %s", e)
            return None

    def preview_gradient(self, gtype: str, color1: str, color2: str, angle: int) -> Image.Image:
        spec = {
            "type": (gtype or "linear").lower(),  # "linear" or "radial" (preview uses linear with rotation)
            "start": _hex_to_rgb(color1 or "#222222"),
            "end": _hex_to_rgb(color2 or "#888888"),
            "angle_deg": float(angle or 0),
        }
        bg = _create_gradient_preview(spec, PREVIEW_W, PREVIEW_H)
        return _np_to_pil(bg)

    def ai_generate_background(self, prompt: str, seed: int, width: int, height: int) -> Tuple[Optional[Image.Image], Optional[str], str]:
        """
        Try generating a background with diffusers; save to /tmp and return (img, path, status).
        """
        try:
            from diffusers import StableDiffusionPipeline
            import torch
            model_id = os.environ.get("BGFX_T2I_MODEL", "stabilityai/stable-diffusion-2-1")
            dtype = torch.float16 if torch.cuda.is_available() else torch.float32
            device = "cuda" if torch.cuda.is_available() else "cpu"
            pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype).to(device)
            g = torch.Generator(device=device).manual_seed(int(seed)) if seed is not None else None
            if device == "cuda":
                with torch.autocast("cuda"):
                    img = pipe(prompt, height=height, width=width, guidance_scale=7.0, num_inference_steps=25, generator=g).images[0]
            else:
                img = pipe(prompt, height=height, width=width, guidance_scale=7.0, num_inference_steps=25, generator=g).images[0]
            tmp_path = f"/tmp/ai_bg_{int(time.time())}.png"
            img.save(tmp_path)
            return img.resize((PREVIEW_W, PREVIEW_H), Image.LANCZOS), tmp_path, f"AI background generated ✓ ({os.path.basename(tmp_path)})"
        except Exception as e:
            logger.warning("AI generation unavailable: %s", e)
            return None, None, f"AI generation unavailable: {e}"

    # ---- PROCESS VIDEO ----
    def process_video(
        self,
        video: str,
        bg_source: str,
        preset_key: str,
        custom_bg_file,
        grad_type: str,
        grad_color1: str,
        grad_color2: str,
        grad_angle: int,
        ai_bg_path: Optional[str],
    ):
        if not self.models_loaded:
            return None, "Models not loaded yet"

        if not video:
            return None, "Please upload a video first."

        logger.info("process_video called (video=%s, source=%s, preset=%s, file=%s, grad=%s, ai=%s)",
                    video, bg_source, preset_key, getattr(custom_bg_file, "name", None) if custom_bg_file else None,
                    {"type": grad_type, "c1": grad_color1, "c2": grad_color2, "angle": grad_angle},
                    ai_bg_path)

        output_path = f"/tmp/output_{int(time.time())}.mp4"

        # ✅ Validate input video (tuple: ok, reason)
        ok, reason = validate_video_file(video)
        if not ok:
            logger.warning("Invalid/unreadable video: %s (%s)", video, reason)
            return None, f"Invalid or unreadable video file: {reason}"

        # Build bg_config based on source
        src = (bg_source or "Preset").lower()
        if src == "upload" and custom_bg_file is not None:
            bg_cfg: Dict[str, Any] = {"custom_path": custom_bg_file.name}
        elif src == "gradient":
            bg_cfg = {
                "gradient": {
                    "type": (grad_type or "linear").lower(),
                    "start": _hex_to_rgb(grad_color1 or "#222222"),
                    "end": _hex_to_rgb(grad_color2 or "#888888"),
                    "angle_deg": float(grad_angle or 0),
                }
            }
        elif src == "ai generate" and ai_bg_path:
            bg_cfg = {"custom_path": ai_bg_path}
        else:
            key = preset_key if preset_key in PROFESSIONAL_BACKGROUNDS else "office"
            bg_cfg = {"background_choice": key}

        try:
            result = self.core_processor.process_video(
                input_path=video,
                output_path=output_path,
                bg_config=bg_cfg
            )
            logger.info("Core processing done → %s", output_path)

            output_with_audio = self.audio_proc.add_audio_to_video(video, output_path)
            logger.info("Audio merged → %s", output_with_audio)

            frames = (result.get('frames') if isinstance(result, dict) else None) or "n/a"
            return output_with_audio, f"Processing complete ({frames} frames, background={bg_source})"

        except Exception as e:
            logger.exception("Processing failed")
            return None, f"Processing failed: {e}"

# 7) Gradio UI
def create_csp_safe_gradio():
    import gradio as gr
    app = VideoBackgroundApp()

    with gr.Blocks(
        title="BackgroundFX Pro - CSP Safe",
        analytics_enabled=False,
        css="""
        .gradio-container { max-width: 1100px; margin: auto; }
        """
    ) as demo:
        gr.Markdown("# 🎬 BackgroundFX Pro (CSP-Safe)")
        gr.Markdown("Replace your video background with cinema-quality AI matting. Now with live background preview.")

        with gr.Row():
            with gr.Column(scale=1):
                video = gr.Video(label="Upload Video")
                bg_source = gr.Radio(
                    ["Preset", "Upload", "Gradient", "AI Generate"],
                    value="Preset",
                    label="Background Source",
                    interactive=True,
                )

                # PRESET
                preset_choices = list(PROFESSIONAL_BACKGROUNDS.keys())
                default_preset = "office" if "office" in preset_choices else (preset_choices[0] if preset_choices else "office")
                preset_key = gr.Dropdown(choices=preset_choices, value=default_preset, label="Preset")

                # UPLOAD
                custom_bg = gr.File(label="Custom Background (Image)", file_types=["image"], visible=False)

                # GRADIENT
                grad_type = gr.Dropdown(choices=["Linear", "Radial"], value="Linear", label="Gradient Type", visible=False)
                grad_color1 = gr.ColorPicker(value="#222222", label="Start Color", visible=False)
                grad_color2 = gr.ColorPicker(value="#888888", label="End Color", visible=False)
                grad_angle = gr.Slider(0, 360, value=0, step=1, label="Angle (degrees)", visible=False)

                # AI
                ai_prompt = gr.Textbox(label="AI Prompt", placeholder="e.g., sunlit modern office, soft bokeh, neutral palette", visible=False)
                ai_seed = gr.Slider(0, 2**31-1, step=1, value=42, label="Seed", visible=False)
                ai_size = gr.Dropdown(choices=["640x360","960x540","1280x720"], value="640x360", label="AI Image Size", visible=False)
                ai_go = gr.Button("✨ Generate Background", visible=False, variant="secondary")
                ai_status = gr.Markdown(visible=False)
                ai_bg_path_state = gr.State(value=None)  # store /tmp path

                btn_load = gr.Button("🔄 Load Models", variant="secondary")
                btn_run = gr.Button("🎬 Process Video", variant="primary")

            with gr.Column(scale=1):
                status = gr.Textbox(label="Status", lines=4)
                bg_preview = gr.Image(label="Background Preview", width=PREVIEW_W, height=PREVIEW_H, interactive=False)
                out_video = gr.Video(label="Processed Video")

        # ---------- UI wiring ----------

        # background source → show/hide controls
        def on_source_toggle(src):
            src = (src or "Preset").lower()
            return (
                gr.update(visible=(src == "preset")),
                gr.update(visible=(src == "upload")),
                gr.update(visible=(src == "gradient")),
                gr.update(visible=(src == "gradient")),
                gr.update(visible=(src == "gradient")),
                gr.update(visible=(src == "gradient")),
                gr.update(visible=(src == "ai generate")),
                gr.update(visible=(src == "ai generate")),
                gr.update(visible=(src == "ai generate")),
                gr.update(visible=(src == "ai generate")),
                gr.update(visible=(src == "ai generate")),
            )
        bg_source.change(
            fn=on_source_toggle,
            inputs=[bg_source],
            outputs=[preset_key, custom_bg, grad_type, grad_color1, grad_color2, grad_angle, ai_prompt, ai_seed, ai_size, ai_go, ai_status],
        )

        # ✅ Clear any previous AI image path when switching source (avoids stale AI background)
        def _clear_ai_state(_): 
            return None
        bg_source.change(fn=_clear_ai_state, inputs=[bg_source], outputs=[ai_bg_path_state])

        # When source changes, also refresh preview based on visible controls
        def on_source_preview(src, pkey, gt, c1, c2, ang):
            src_l = (src or "Preset").lower()
            if src_l == "preset":
                return app.preview_preset(pkey)
            elif src_l == "gradient":
                return app.preview_gradient(gt, c1, c2, ang)
            # For upload/AI we keep whatever the component change handler sets (don’t overwrite)
            return gr.update()  # no-op
        bg_source.change(
            fn=on_source_preview,
            inputs=[bg_source, preset_key, grad_type, grad_color1, grad_color2, grad_angle],
            outputs=[bg_preview]
        )

        # live previews
        preset_key.change(fn=lambda k: app.preview_preset(k), inputs=[preset_key], outputs=[bg_preview])
        custom_bg.change(fn=lambda f: app.preview_upload(f), inputs=[custom_bg], outputs=[bg_preview])
        for comp in (grad_type, grad_color1, grad_color2, grad_angle):
            comp.change(
                fn=lambda gt, c1, c2, ang: app.preview_gradient(gt, c1, c2, ang),
                inputs=[grad_type, grad_color1, grad_color2, grad_angle],
                outputs=[bg_preview],
            )

        # AI generate
        def ai_generate(prompt, seed, size):
            try:
                w, h = map(int, size.split("x"))
            except Exception:
                w, h = PREVIEW_W, PREVIEW_H
            img, path, msg = app.ai_generate_background(
                prompt or "professional modern office background, neutral colors, depth of field",
                int(seed), w, h
            )
            return img, (path or None), msg
        ai_go.click(fn=ai_generate, inputs=[ai_prompt, ai_seed, ai_size], outputs=[bg_preview, ai_bg_path_state, ai_status])

        # model load / run
        def safe_load():
            msg = app.load_models()
            logger.info("UI: models loaded")
            # Set initial preview (preset default)
            default_key = preset_key.value if hasattr(preset_key, "value") else "office"
            return msg, app.preview_preset(default_key)
        btn_load.click(fn=safe_load, outputs=[status, bg_preview])

        def safe_process(vid, src, pkey, file, gtype, c1, c2, ang, ai_path):
            return app.process_video(vid, src, pkey, file, gtype, c1, c2, ang, ai_path)
        btn_run.click(
            fn=safe_process,
            inputs=[video, bg_source, preset_key, custom_bg, grad_type, grad_color1, grad_color2, grad_angle, ai_bg_path_state],
            outputs=[out_video, status]
        )

    return demo

# 8) Launch
if __name__ == "__main__":
    logger.info("Launching CSP-safe Gradio interface for Hugging Face Spaces")
    demo = create_csp_safe_gradio()
    demo.queue().launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        debug=False,
        inbrowser=False
    )