File size: 24,376 Bytes
6b5a7d7
 
 
5680088
 
6b5a7d7
 
 
 
 
 
 
5680088
6b5a7d7
5680088
6b5a7d7
5680088
6b5a7d7
 
 
5680088
6b5a7d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5680088
 
6b5a7d7
5680088
6b5a7d7
5680088
 
6b5a7d7
 
 
 
 
 
 
 
 
7a78d2f
5680088
 
6b5a7d7
 
 
 
5680088
 
6b5a7d7
 
5680088
 
6b5a7d7
 
 
 
5680088
 
6b5a7d7
 
7a78d2f
5680088
6b5a7d7
5680088
6b5a7d7
 
5680088
6b5a7d7
 
 
 
 
 
 
5680088
 
6b5a7d7
5680088
7a78d2f
5680088
 
 
 
 
 
 
 
 
 
 
6b5a7d7
 
5680088
 
7a78d2f
6b5a7d7
5680088
6b5a7d7
5680088
6b5a7d7
 
5680088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b5a7d7
 
 
5680088
6b5a7d7
7a78d2f
6b5a7d7
 
5680088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b5a7d7
 
 
 
 
 
7a78d2f
6b5a7d7
 
 
 
 
 
 
 
 
 
 
5680088
6b5a7d7
 
 
5680088
7a78d2f
6b5a7d7
 
 
 
 
 
 
 
5680088
6b5a7d7
7a78d2f
5680088
 
6b5a7d7
 
5680088
6b5a7d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5680088
 
6b5a7d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a78d2f
6b5a7d7
 
 
5680088
6b5a7d7
 
 
 
5680088
 
6b5a7d7
 
5680088
6b5a7d7
 
5680088
6b5a7d7
 
 
 
 
 
 
 
 
 
5680088
 
6b5a7d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5680088
 
 
6b5a7d7
 
 
 
5680088
 
6b5a7d7
 
 
 
 
 
 
 
 
 
 
5680088
6b5a7d7
 
 
 
 
 
5680088
6b5a7d7
 
 
 
 
 
 
 
5680088
 
6b5a7d7
 
 
 
 
 
5680088
 
6b5a7d7
 
 
 
 
 
 
5680088
 
6b5a7d7
5680088
6b5a7d7
 
 
 
 
5680088
6b5a7d7
 
 
5680088
6b5a7d7
5680088
6b5a7d7
 
 
 
 
 
 
 
 
 
 
 
5680088
 
6b5a7d7
 
 
 
 
 
 
 
 
 
 
 
 
5680088
 
6b5a7d7
 
 
 
 
 
5680088
6b5a7d7
 
5680088
6b5a7d7
 
 
 
 
 
 
 
 
 
 
 
5680088
 
6b5a7d7
 
 
 
 
 
 
 
 
 
 
 
 
5680088
 
6b5a7d7
 
 
 
 
 
 
5680088
6b5a7d7
 
 
 
 
 
 
 
 
5680088
6b5a7d7
 
 
5680088
6b5a7d7
 
 
 
5680088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b5a7d7
5680088
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
#!/usr/bin/env python3
"""
utilities.py - Helper functions and utilities for Video Background Replacement
Contains all the utility functions, background creation functions
UPDATED: Models passed as parameters instead of globals
"""

import os
import cv2
import numpy as np
import torch
import requests
from PIL import Image, ImageDraw
import logging
import time

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Professional background templates
PROFESSIONAL_BACKGROUNDS = {
    "office_modern": {
        "name": "Modern Office",
        "type": "gradient", 
        "colors": ["#f8f9fa", "#e9ecef", "#dee2e6"],
        "direction": "diagonal",
        "description": "Clean, contemporary office environment"
    },
    "office_executive": {
        "name": "Executive Office",
        "type": "gradient",
        "colors": ["#2c3e50", "#34495e", "#5d6d7e"],
        "direction": "vertical",
        "description": "Professional executive setting"
    },
    "studio_blue": {
        "name": "Professional Blue",
        "type": "gradient",
        "colors": ["#1e3c72", "#2a5298", "#3498db"],
        "direction": "radial",
        "description": "Broadcast-quality blue studio"
    },
    "studio_green": {
        "name": "Broadcast Green",
        "type": "color",
        "colors": ["#00b894"],
        "chroma_key": True,
        "description": "Professional green screen replacement"
    },
    "conference": {
        "name": "Conference Room",
        "type": "gradient",
        "colors": ["#74b9ff", "#0984e3", "#6c5ce7"],
        "direction": "horizontal",
        "description": "Modern conference room setting"
    },
    "minimalist": {
        "name": "Minimalist White",
        "type": "gradient",
        "colors": ["#ffffff", "#f1f2f6", "#ddd"],
        "direction": "soft_radial",
        "description": "Clean, minimal background"
    },
    "warm_gradient": {
        "name": "Warm Sunset",
        "type": "gradient",
        "colors": ["#ff7675", "#fd79a8", "#fdcb6e"],
        "direction": "diagonal",
        "description": "Warm, inviting atmosphere"
    },
    "cool_gradient": {
        "name": "Cool Ocean",
        "type": "gradient", 
        "colors": ["#74b9ff", "#0984e3", "#00cec9"],
        "direction": "vertical",
        "description": "Cool, calming ocean tones"
    },
    "corporate": {
        "name": "Corporate Navy",
        "type": "gradient",
        "colors": ["#2d3436", "#636e72", "#74b9ff"],
        "direction": "radial",
        "description": "Corporate professional setting"
    },
    "creative": {
        "name": "Creative Purple",
        "type": "gradient",
        "colors": ["#6c5ce7", "#a29bfe", "#fd79a8"],
        "direction": "diagonal",
        "description": "Creative, artistic environment"
    },
    "tech_dark": {
        "name": "Tech Dark",
        "type": "gradient",
        "colors": ["#0c0c0c", "#2d3748", "#4a5568"],
        "direction": "vertical",
        "description": "Modern tech/gaming setup"
    },
    "nature_green": {
        "name": "Nature Green",
        "type": "gradient",
        "colors": ["#27ae60", "#2ecc71", "#58d68d"],
        "direction": "soft_radial",
        "description": "Natural, organic background"
    },
    "luxury_gold": {
        "name": "Luxury Gold",
        "type": "gradient",
        "colors": ["#f39c12", "#e67e22", "#d68910"],
        "direction": "diagonal",
        "description": "Premium, luxury setting"
    },
    "medical_clean": {
        "name": "Medical Clean",
        "type": "gradient",
        "colors": ["#ecf0f1", "#bdc3c7", "#95a5a6"],
        "direction": "horizontal",
        "description": "Clean, medical/healthcare setting"
    },
    "education_blue": {
        "name": "Education Blue",
        "type": "gradient",
        "colors": ["#3498db", "#5dade2", "#85c1e9"],
        "direction": "vertical",
        "description": "Educational, learning environment"
    }
}

def segment_person_hq(image, predictor):
    """High-quality person segmentation using provided SAM2 predictor"""
    try:
        predictor.set_image(image)
        h, w = image.shape[:2]
        
        # Strategic point placement for person detection
        points = np.array([
            [w//2, h//4],    # Top-center (head)
            [w//2, h//2],    # Center (torso)
            [w//2, 3*h//4],  # Bottom-center (legs)
            [w//4, h//2],    # Left-side (arm)
            [3*w//4, h//2],  # Right-side (arm)
            [w//5, h//5],    # Top-left (hair/accessories)
            [4*w//5, h//5]   # Top-right (hair/accessories)
        ])
        labels = np.ones(len(points))
        
        masks, scores, _ = predictor.predict(
            point_coords=points,
            point_labels=labels,
            multimask_output=True
        )
        
        # Select best mask
        best_idx = np.argmax(scores)
        best_mask = masks[best_idx]
        
        # Ensure proper format
        if len(best_mask.shape) > 2:
            best_mask = best_mask.squeeze()
        if best_mask.dtype != np.uint8:
            best_mask = (best_mask * 255).astype(np.uint8)
        
        # Post-process mask
        kernel = np.ones((3, 3), np.uint8)
        best_mask = cv2.morphologyEx(best_mask, cv2.MORPH_CLOSE, kernel)
        best_mask = cv2.GaussianBlur(best_mask.astype(np.float32), (3, 3), 0.8)
        
        return (best_mask * 255).astype(np.uint8) if best_mask.max() <= 1.0 else best_mask.astype(np.uint8)
        
    except Exception as e:
        logger.error(f"Segmentation error: {e}")
        # Fallback to simple center mask
        h, w = image.shape[:2]
        fallback_mask = np.zeros((h, w), dtype=np.uint8)
        x1, y1 = w//4, h//6
        x2, y2 = 3*w//4, 5*h//6
        fallback_mask[y1:y2, x1:x2] = 255
        return fallback_mask

def refine_mask_hq(image, mask, matanyone_processor):
    """Cinema-quality mask refinement using provided MatAnyone processor"""
    try:
        # Prepare image for matting
        image_filtered = cv2.bilateralFilter(image, 10, 75, 75)
        
        # Use MatAnyone for refinement
        if hasattr(matanyone_processor, 'process_video'):
            # If it's the HF InferenceCore, we need to handle differently
            # For now, use enhanced OpenCV refinement
            refined_mask = enhance_mask_opencv(image_filtered, mask)
        else:
            # Direct inference call
            refined_mask = matanyone_processor.infer(image_filtered, mask)
        
        # Ensure proper format
        if len(refined_mask.shape) == 3:
            refined_mask = cv2.cvtColor(refined_mask, cv2.COLOR_BGR2GRAY)
        
        # Additional refinement
        refined_mask = cv2.bilateralFilter(refined_mask, 10, 75, 75)
        refined_mask = cv2.medianBlur(refined_mask, 3)
        
        return refined_mask
        
    except Exception as e:
        logger.error(f"Mask refinement error: {e}")
        return enhance_mask_opencv(image, mask)

def enhance_mask_opencv(image, mask):
    """Enhanced mask refinement using OpenCV techniques"""
    try:
        if len(mask.shape) == 3:
            mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
        
        # Bilateral filtering for edge preservation
        refined_mask = cv2.bilateralFilter(mask, 9, 75, 75)
        
        # Morphological operations
        kernel_ellipse = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
        refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel_ellipse)
        refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_OPEN, kernel_ellipse)
        
        # Gaussian blur for smoothing
        refined_mask = cv2.GaussianBlur(refined_mask, (3, 3), 1.0)
        
        # Edge enhancement
        edges = cv2.Canny(refined_mask, 50, 150)
        edge_enhancement = cv2.dilate(edges, np.ones((2, 2), np.uint8), iterations=1)
        refined_mask = cv2.bitwise_or(refined_mask, edge_enhancement // 4)
        
        # Distance transform for better interior
        dist_transform = cv2.distanceTransform(refined_mask, cv2.DIST_L2, 5)
        dist_transform = cv2.normalize(dist_transform, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
        
        # Blend with distance transform
        alpha = 0.7
        refined_mask = cv2.addWeighted(refined_mask, alpha, dist_transform, 1-alpha, 0)
        
        # Final smoothing
        refined_mask = cv2.medianBlur(refined_mask, 3)
        refined_mask = cv2.GaussianBlur(refined_mask, (1, 1), 0.5)
        
        return refined_mask
        
    except Exception as e:
        logger.warning(f"Enhanced mask refinement error: {e}")
        return mask if len(mask.shape) == 2 else cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)

def create_green_screen_background(frame):
    """Create green screen background for two-stage processing"""
    h, w = frame.shape[:2]
    green_screen = np.full((h, w, 3), (0, 177, 64), dtype=np.uint8)
    return green_screen

def replace_background_hq(frame, mask, background):
    """High-quality background replacement with advanced compositing"""
    try:
        # Resize background to match frame
        background = cv2.resize(background, (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_LANCZOS4)
        
        # Ensure mask is single channel
        if len(mask.shape) == 3:
            mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
        
        # Normalize mask to 0-1 range
        mask_float = mask.astype(np.float32) / 255.0
        
        # Edge feathering for smooth transitions
        feather_radius = 3
        kernel_size = feather_radius * 2 + 1
        mask_feathered = cv2.GaussianBlur(mask_float, (kernel_size, kernel_size), feather_radius/3)
        
        # Create 3-channel mask
        mask_3channel = np.stack([mask_feathered] * 3, axis=2)
        
        # Linear gamma correction for proper compositing
        frame_linear = np.power(frame.astype(np.float32) / 255.0, 2.2)
        background_linear = np.power(background.astype(np.float32) / 255.0, 2.2)
        
        # Composite in linear space
        result_linear = frame_linear * mask_3channel + background_linear * (1 - mask_3channel)
        
        # Convert back to gamma space
        result = np.power(result_linear, 1/2.2) * 255.0
        result = np.clip(result, 0, 255).astype(np.uint8)
        
        return result
        
    except Exception as e:
        logger.error(f"Background replacement error: {e}")
        # Fallback to simple replacement
        try:
            if len(mask.shape) == 3:
                mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
            background = cv2.resize(background, (frame.shape[1], frame.shape[0]))
            mask_normalized = mask.astype(np.float32) / 255.0
            mask_3channel = np.stack([mask_normalized] * 3, axis=2)
            result = frame * mask_3channel + background * (1 - mask_3channel)
            return result.astype(np.uint8)
        except:
            return frame

def create_professional_background(bg_config, width, height):
    """Create professional background based on configuration"""
    try:
        if bg_config["type"] == "color":
            color_hex = bg_config["colors"][0].lstrip('#')
            color_rgb = tuple(int(color_hex[i:i+2], 16) for i in (0, 2, 4))
            color_bgr = color_rgb[::-1]
            background = np.full((height, width, 3), color_bgr, dtype=np.uint8)
        elif bg_config["type"] == "gradient":
            background = create_gradient_background(bg_config, width, height)
        else:
            background = np.full((height, width, 3), (128, 128, 128), dtype=np.uint8)
        return background
    except Exception as e:
        logger.error(f"Background creation error: {e}")
        return np.full((height, width, 3), (128, 128, 128), dtype=np.uint8)

def create_gradient_background(bg_config, width, height):
    """Create high-quality gradient backgrounds"""
    try:
        colors = bg_config["colors"]
        direction = bg_config.get("direction", "vertical")
        
        # Convert hex to RGB
        rgb_colors = []
        for color_hex in colors:
            color_hex = color_hex.lstrip('#')
            try:
                rgb = tuple(int(color_hex[i:i+2], 16) for i in (0, 2, 4))
                rgb_colors.append(rgb)
            except ValueError:
                rgb_colors.append((128, 128, 128))
        
        if not rgb_colors:
            rgb_colors = [(128, 128, 128)]
        
        # Create PIL image for gradient
        pil_img = Image.new('RGB', (width, height))
        draw = ImageDraw.Draw(pil_img)
        
        def interpolate_color(colors, progress):
            if len(colors) == 1:
                return colors[0]
            elif len(colors) == 2:
                r = int(colors[0][0] + (colors[1][0] - colors[0][0]) * progress)
                g = int(colors[0][1] + (colors[1][1] - colors[0][1]) * progress)
                b = int(colors[0][2] + (colors[1][2] - colors[0][2]) * progress)
                return (r, g, b)
            else:
                segment = progress * (len(colors) - 1)
                idx = int(segment)
                local_progress = segment - idx
                if idx >= len(colors) - 1:
                    return colors[-1]
                else:
                    c1, c2 = colors[idx], colors[idx + 1]
                    r = int(c1[0] + (c2[0] - c1[0]) * local_progress)
                    g = int(c1[1] + (c2[1] - c1[1]) * local_progress)
                    b = int(c1[2] + (c2[2] - c1[2]) * local_progress)
                    return (r, g, b)
        
        # Generate gradient based on direction
        if direction == "vertical":
            for y in range(height):
                progress = y / height if height > 0 else 0
                color = interpolate_color(rgb_colors, progress)
                draw.line([(0, y), (width, y)], fill=color)
        elif direction == "horizontal":
            for x in range(width):
                progress = x / width if width > 0 else 0
                color = interpolate_color(rgb_colors, progress)
                draw.line([(x, 0), (x, height)], fill=color)
        elif direction == "diagonal":
            max_distance = width + height
            for y in range(height):
                for x in range(width):
                    progress = (x + y) / max_distance if max_distance > 0 else 0
                    progress = min(1.0, progress)
                    color = interpolate_color(rgb_colors, progress)
                    pil_img.putpixel((x, y), color)
        elif direction in ["radial", "soft_radial"]:
            center_x, center_y = width // 2, height // 2
            max_distance = np.sqrt(center_x**2 + center_y**2)
            for y in range(height):
                for x in range(width):
                    distance = np.sqrt((x - center_x)**2 + (y - center_y)**2)
                    progress = distance / max_distance if max_distance > 0 else 0
                    progress = min(1.0, progress)
                    if direction == "soft_radial":
                        progress = progress**0.7
                    color = interpolate_color(rgb_colors, progress)
                    pil_img.putpixel((x, y), color)
        else:
            # Default to vertical
            for y in range(height):
                progress = y / height if height > 0 else 0
                color = interpolate_color(rgb_colors, progress)
                draw.line([(0, y), (width, y)], fill=color)
        
        # Convert to OpenCV format
        background = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
        return background
        
    except Exception as e:
        logger.error(f"Gradient creation error: {e}")
        # Fallback gradient
        background = np.zeros((height, width, 3), dtype=np.uint8)
        for y in range(height):
            intensity = int(255 * (y / height)) if height > 0 else 128
            background[y, :] = [intensity, intensity, intensity]
        return background

def create_procedural_background(prompt, style, width, height):
    """Create procedural background based on text prompt and style"""
    try:
        prompt_lower = prompt.lower()
        
        # Color mapping based on keywords
        color_map = {
            'blue': ['#1e3c72', '#2a5298', '#3498db'],
            'ocean': ['#74b9ff', '#0984e3', '#00cec9'], 
            'sky': ['#87CEEB', '#4682B4', '#1E90FF'],
            'green': ['#27ae60', '#2ecc71', '#58d68d'],
            'nature': ['#2d5016', '#3c6e1f', '#4caf50'],
            'forest': ['#1B4332', '#2D5A36', '#40916C'],
            'red': ['#e74c3c', '#c0392b', '#ff7675'],
            'sunset': ['#ff7675', '#fd79a8', '#fdcb6e'],
            'orange': ['#e67e22', '#f39c12', '#ff9f43'],
            'purple': ['#6c5ce7', '#a29bfe', '#fd79a8'],
            'pink': ['#fd79a8', '#fdcb6e', '#ff7675'],
            'yellow': ['#f1c40f', '#f39c12', '#fdcb6e'],
            'tech': ['#2c3e50', '#34495e', '#74b9ff'],
            'space': ['#0c0c0c', '#2d3748', '#4a5568'],
            'dark': ['#1a1a1a', '#2d2d2d', '#404040'],
            'office': ['#f8f9fa', '#e9ecef', '#74b9ff'],
            'corporate': ['#2c3e50', '#34495e', '#74b9ff'],
            'warm': ['#ff7675', '#fd79a8', '#fdcb6e'],
            'cool': ['#74b9ff', '#0984e3', '#00cec9'],
            'minimal': ['#ffffff', '#f1f2f6', '#ddd'],
            'abstract': ['#6c5ce7', '#a29bfe', '#fd79a8']
        }
        
        # Select colors based on prompt
        selected_colors = ['#3498db', '#2ecc71', '#e74c3c']  # Default
        for keyword, colors in color_map.items():
            if keyword in prompt_lower:
                selected_colors = colors
                break
        
        # Create background based on style
        if style == "abstract":
            return create_abstract_background(selected_colors, width, height)
        elif style == "minimalist":
            return create_minimalist_background(selected_colors, width, height)
        elif style == "corporate":
            return create_corporate_background(selected_colors, width, height)
        elif style == "nature":
            return create_nature_background(selected_colors, width, height)
        elif style == "artistic":
            return create_artistic_background(selected_colors, width, height)
        else:
            # Default gradient
            bg_config = {
                "type": "gradient",
                "colors": selected_colors[:2],
                "direction": "diagonal"
            }
            return create_gradient_background(bg_config, width, height)
            
    except Exception as e:
        logger.error(f"Procedural background creation failed: {e}")
        return None

def create_abstract_background(colors, width, height):
    """Create abstract geometric background"""
    try:
        background = np.zeros((height, width, 3), dtype=np.uint8)
        
        # Convert hex colors to BGR
        bgr_colors = []
        for color in colors:
            hex_color = color.lstrip('#')
            rgb = tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
            bgr = rgb[::-1]
            bgr_colors.append(bgr)
        
        # Create base gradient
        for y in range(height):
            progress = y / height
            color = [
                int(bgr_colors[0][i] + (bgr_colors[1][i] - bgr_colors[0][i]) * progress)
                for i in range(3)
            ]
            background[y, :] = color
        
        # Add geometric shapes
        import random
        random.seed(42)  # Consistent results
        for _ in range(8):
            center_x = random.randint(width//4, 3*width//4)
            center_y = random.randint(height//4, 3*height//4)
            radius = random.randint(width//20, width//8)
            color = bgr_colors[random.randint(0, len(bgr_colors)-1)]
            
            overlay = background.copy()
            cv2.circle(overlay, (center_x, center_y), radius, color, -1)
            cv2.addWeighted(background, 0.7, overlay, 0.3, 0, background)
        
        return background
        
    except Exception as e:
        logger.error(f"Abstract background creation failed: {e}")
        return None

def create_minimalist_background(colors, width, height):
    """Create minimalist background"""
    try:
        bg_config = {
            "type": "gradient",
            "colors": colors[:2],
            "direction": "soft_radial"
        }
        return create_gradient_background(bg_config, width, height)
        
    except Exception as e:
        logger.error(f"Minimalist background creation failed: {e}")
        return None

def create_corporate_background(colors, width, height):
    """Create corporate background"""
    try:
        bg_config = {
            "type": "gradient", 
            "colors": ['#2c3e50', '#34495e', '#74b9ff'],
            "direction": "diagonal"
        }
        background = create_gradient_background(bg_config, width, height)
        
        # Add subtle grid pattern
        grid_color = (80, 80, 80)
        grid_spacing = width // 20
        for x in range(0, width, grid_spacing):
            cv2.line(background, (x, 0), (x, height), grid_color, 1)
        for y in range(0, height, grid_spacing):
            cv2.line(background, (0, y), (width, y), grid_color, 1)
        
        background = cv2.GaussianBlur(background, (3, 3), 1.0)
        return background
        
    except Exception as e:
        logger.error(f"Corporate background creation failed: {e}")
        return None

def create_nature_background(colors, width, height):
    """Create nature background"""
    try:
        bg_config = {
            "type": "gradient",
            "colors": ['#2d5016', '#3c6e1f', '#4caf50'],
            "direction": "vertical"
        }
        return create_gradient_background(bg_config, width, height)
        
    except Exception as e:
        logger.error(f"Nature background creation failed: {e}")
        return None

def create_artistic_background(colors, width, height):
    """Create artistic background with creative elements"""
    try:
        bg_config = {
            "type": "gradient",
            "colors": colors,
            "direction": "diagonal"
        }
        background = create_gradient_background(bg_config, width, height)
        
        # Add artistic wave patterns
        import random
        random.seed(42)
        bgr_colors = []
        for color in colors:
            hex_color = color.lstrip('#')
            rgb = tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
            bgr_colors.append(rgb[::-1])
        
        overlay = background.copy()
        for i in range(3):
            pts = []
            for x in range(0, width, width//10):
                y = int(height//2 + (height//4) * np.sin(2 * np.pi * x / width + i))
                pts.append([x, y])
            pts = np.array(pts, np.int32)
            color = bgr_colors[i % len(bgr_colors)]
            cv2.polylines(overlay, [pts], False, color, thickness=width//50)
        
        cv2.addWeighted(background, 0.7, overlay, 0.3, 0, background)
        background = cv2.GaussianBlur(background, (3, 3), 1.0)
        return background
        
    except Exception as e:
        logger.error(f"Artistic background creation failed: {e}")
        return None

def get_model_status():
    """Get current model loading status"""
    return "Models loaded in app.py - ready for processing"

def validate_video_file(video_path):
    """Validate video file format and basic properties"""
    if not video_path or not os.path.exists(video_path):
        return False, "Video file not found"
    try:
        cap = cv2.VideoCapture(video_path)
        if not cap.isOpened():
            return False, "Cannot open video file"
        frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        if frame_count == 0:
            return False, "Video appears to be empty"
        cap.release()
        return True, "Video file valid"
    except Exception as e:
        return False, f"Error validating video: {str(e)}"

def get_available_backgrounds():
    """Get list of available professional backgrounds"""
    return {key: config["name"] for key, config in PROFESSIONAL_BACKGROUNDS.items()}