File size: 22,968 Bytes
8ad08ed ee9591a 8ad08ed 956d701 ee9591a 956d701 8ad08ed a647170 968e618 b1ff196 a647170 8ad08ed 956d701 968e618 de84d79 956d701 968e618 2bfe6e5 a647170 8ad08ed 968e618 8ad08ed a647170 968e618 6983e91 8ad08ed 956d701 a647170 956d701 a647170 ee9591a b1ff196 956d701 b1ff196 a647170 ee9591a a647170 ee9591a a647170 ee9591a a647170 b1ff196 8ad08ed 956d701 968e618 a647170 956d701 968e618 8ad08ed 968e618 8ad08ed 956d701 968e618 956d701 ee9591a 6983e91 ee9591a 6983e91 ee9591a 6983e91 956d701 ee9591a 956d701 ee9591a 956d701 a647170 956d701 ee9591a 956d701 ee9591a 956d701 ee9591a 956d701 ee9591a 956d701 ee9591a 956d701 ee9591a 6983e91 ee9591a 956d701 ee9591a 956d701 968e618 a647170 956d701 968e618 956d701 968e618 de84d79 956d701 968e618 de84d79 968e618 956d701 a647170 956d701 968e618 de84d79 956d701 de84d79 b1ff196 968e618 956d701 aa315a3 968e618 aa315a3 968e618 aa315a3 a647170 8ad08ed a647170 8ad08ed 956d701 8ad08ed 956d701 8ad08ed a647170 de84d79 ee9591a a647170 ee9591a a647170 b1ff196 a647170 b1ff196 a647170 b1ff196 8ad08ed aa315a3 8ad08ed 956d701 de84d79 956d701 de84d79 956d701 a647170 b1ff196 956d701 a647170 956d701 a647170 956d701 ee9591a a647170 b1ff196 956d701 aa315a3 b1ff196 956d701 aa315a3 968e618 8ad08ed 956d701 b1ff196 a647170 956d701 a647170 956d701 a647170 8ad08ed a647170 aa315a3 968e618 aa315a3 8ad08ed 968e618 aa315a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
#!/usr/bin/env python3
"""
Compatibility shim: CoreVideoProcessor (stabilized + crisper edges)
- Accepts background configs:
{"custom_path": "/path/to/image.png"}
{"background_choice": "<preset_key>"}
{"gradient": {type, start, end, angle_deg}}
- Model-only downscale (max_model_size) for speed, full-res render.
- FFmpeg pipe writer with encoder fallbacks and stderr surfacing; falls back
to OpenCV VideoWriter if FFmpeg isn't available or fails mid-run.
- Temporal smoothing + mask hardening to avoid flicker/ghosting.
Requirements for the models provider:
- get_sam2() -> predictor or None
- get_matanyone() -> processor or None
"""
from __future__ import annotations
from dataclasses import dataclass
from typing import Optional, Dict, Any, Callable
import time
import threading
import shutil
import subprocess
import shlex
import cv2
import numpy as np
# Try project logger; fall back to std logging
try:
from utils.logging_setup import make_logger
_log = make_logger(__name__)
except Exception:
import logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(name)s - %(message)s")
_log = logging.getLogger(__name__)
# Import directly from utils.cv_processing to avoid circular imports via utils/__init__.py
from utils.cv_processing import (
segment_person_hq,
refine_mask_hq,
replace_background_hq,
create_professional_background,
validate_video_file,
PROFESSIONAL_BACKGROUNDS,
)
# ---------- local gradient helper (no extra imports needed) ----------
def _to_rgb(c):
if isinstance(c, (list, tuple)) and len(c) == 3:
return tuple(int(x) for x in c)
if isinstance(c, str) and c.startswith("#") and len(c) == 7:
return tuple(int(c[i:i+2], 16) for i in (1, 3, 5))
return (255, 255, 255)
def _create_gradient_background_local(spec: Dict[str, Any], width: int, height: int) -> np.ndarray:
"""
Minimal gradient generator for backgrounds (linear with rotation).
spec = {"type": "linear"|"radial"(ignored), "start": (r,g,b)|"#rrggbb", "end": ..., "angle_deg": float}
Returns RGB np.uint8 (H,W,3)
"""
start = _to_rgb(spec.get("start", "#222222"))
end = _to_rgb(spec.get("end", "#888888"))
angle = float(spec.get("angle_deg", 0))
# build vertical gradient
bg = np.zeros((height, width, 3), np.uint8)
for y in range(height):
t = y / max(1, height - 1)
r = int(start[0]*(1-t) + end[0]*t)
g = int(start[1]*(1-t) + end[1]*t)
b = int(start[2]*(1-t) + end[2]*t)
bg[y, :] = (r, g, b)
if abs(angle) % 360 < 1e-6:
return bg
# rotate by angle using OpenCV (RGB-safe)
center = (width / 2, height / 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
rot = cv2.warpAffine(bg, M, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
return rot
@dataclass
class ProcessorConfig:
background_preset: str = "office" # key in PROFESSIONAL_BACKGROUNDS
write_fps: Optional[float] = None # None -> keep source fps
# Model-only downscale (speedup without changing output resolution)
max_model_size: Optional[int] = 1280
# FFmpeg / NVENC output (pipe). If disabled or unavailable, use OpenCV writer.
use_nvenc: bool = True
nvenc_codec: str = "h264" # "h264" or "hevc"
nvenc_preset: str = "p5" # NVENC preset string
nvenc_cq: int = 18 # constant quality (lower = higher quality)
nvenc_tune_hq: bool = True
nvenc_pix_fmt: str = "yuv420p" # browser-safe
# libx264 fallback
x264_preset: str = "medium"
x264_crf: int = 18
x264_pix_fmt: str = "yuv420p"
movflags_faststart: bool = True
# ---------- stability & edge quality ----------
temporal_ema_alpha: float = 0.75 # higher = calmer (0.6β0.85 typical)
min_iou_to_accept: float = 0.05 # reject sudden mask jumps
dilate_px: int = 6 # pad edges to keep hair/ears/shoulders
edge_blur_px: int = 1 # tiny blur to calm edge shimmer
# hardening (turn soft mask into crisper 0/1)
hard_low: float = 0.35 # values below -> 0
hard_high: float = 0.70 # values above -> 1
mask_gamma: float = 0.90 # <1 boosts mid-tones slightly
class _FFmpegPipe:
"""
Wrapper around an FFmpeg stdin pipe with encoder fallbacks and good error messages.
"""
def __init__(self, width: int, height: int, fps: float, out_path: str, cfg: ProcessorConfig, log=_log):
self.width = int(width)
self.height = int(height)
self.fps = float(fps) if fps and fps > 0 else 25.0
self.out_path = out_path
self.cfg = cfg
self.log = log
self.proc: Optional[subprocess.Popen] = None
self.encoder_used: Optional[str] = None
self._stderr: bytes | None = None
self._ffmpeg = shutil.which("ffmpeg")
if not self._ffmpeg:
raise RuntimeError("ffmpeg not found on PATH")
self._start_with_fallbacks()
def _cmd_for_encoder(self, encoder: str) -> list[str]:
base = [
self._ffmpeg,
"-hide_banner", "-loglevel", "error",
"-y",
# rawvideo input from stdin
"-f", "rawvideo",
"-vcodec", "rawvideo",
"-pix_fmt", "bgr24",
"-s", f"{self.width}x{self.height}",
"-r", f"{self.fps}",
"-i", "-", # stdin
"-an", # no audio here
]
if self.cfg.movflags_faststart:
base += ["-movflags", "+faststart"]
if encoder == "h264_nvenc":
base += [
"-c:v", "h264_nvenc",
"-preset", self.cfg.nvenc_preset,
"-cq", str(int(self.cfg.nvenc_cq)),
"-pix_fmt", self.cfg.nvenc_pix_fmt,
]
if self.cfg.nvenc_tune_hq:
base += ["-tune", "hq"]
elif encoder == "hevc_nvenc":
base += [
"-c:v", "hevc_nvenc",
"-preset", self.cfg.nvenc_preset,
"-cq", str(int(self.cfg.nvenc_cq)),
"-pix_fmt", self.cfg.nvenc_pix_fmt,
]
if self.cfg.nvenc_tune_hq:
base += ["-tune", "hq"]
elif encoder == "libx264":
base += [
"-c:v", "libx264",
"-preset", self.cfg.x264_preset,
"-crf", str(int(self.cfg.x264_crf)),
"-pix_fmt", self.cfg.x264_pix_fmt,
]
elif encoder == "mpeg4":
base += [
"-c:v", "mpeg4",
"-q:v", "2",
"-pix_fmt", "yuv420p",
]
else:
base += ["-c:v", "libx264", "-preset", self.cfg.x264_preset, "-crf", str(int(self.cfg.x264_crf)), "-pix_fmt", self.cfg.x264_pix_fmt]
base += [self.out_path]
return base
def _try_start(self, enc: str) -> bool:
cmd = self._cmd_for_encoder(enc)
try:
self.proc = subprocess.Popen(
cmd,
stdin=subprocess.PIPE,
stderr=subprocess.PIPE,
bufsize=10**7,
)
self.encoder_used = enc
self.log.info("FFmpeg started: %s", " ".join(shlex.quote(c) for c in cmd))
# quick poll: if ffmpeg dies immediately, fail fast
time.sleep(0.05)
if self.proc.poll() is not None:
self._stderr = self.proc.stderr.read() if self.proc.stderr else b""
self.log.warning("FFmpeg exited on start with %s: %s", enc, (self._stderr or b"").decode(errors="ignore"))
self.proc = None
return False
return True
except Exception as e:
self.log.warning("Failed to start FFmpeg with %s: %s", enc, e)
self.proc = None
return False
def _start_with_fallbacks(self):
encoders = []
if self.cfg.use_nvenc:
encoders += ["h264_nvenc"] if self.cfg.nvenc_codec.lower() == "h264" else ["hevc_nvenc"]
encoders += ["libx264", "mpeg4"]
for enc in encoders:
if self._try_start(enc):
return
msg = "Could not start FFmpeg with any encoder (nvenc/libx264/mpeg4). Is ffmpeg present and codecs available?"
if self._stderr:
msg += f" Stderr: {(self._stderr or b'').decode(errors='ignore')[:500]}"
raise RuntimeError(msg)
def write(self, frame_bgr: np.ndarray):
if self.proc is None or self.proc.stdin is None:
raise RuntimeError("FFmpeg process is not running (stdin is None).")
if not isinstance(frame_bgr, np.ndarray) or frame_bgr.dtype != np.uint8:
raise ValueError("Frame must be a np.ndarray of dtype uint8.")
if frame_bgr.ndim != 3 or frame_bgr.shape[2] != 3:
raise ValueError("Frame must have shape (H, W, 3).")
if frame_bgr.shape[0] != self.height or frame_bgr.shape[1] != self.width:
raise ValueError(f"Frame size mismatch. Expected {self.width}x{self.height}, got {frame_bgr.shape[1]}x{frame_bgr.shape[0]}.")
# ensure contiguous for tobytes()
frame_bgr = np.ascontiguousarray(frame_bgr)
try:
self.proc.stdin.write(frame_bgr.tobytes())
except Exception as e:
# collect stderr for diagnostics
stderr = b""
try:
if self.proc and self.proc.stderr:
stderr = self.proc.stderr.read()
except Exception:
pass
msg = f"FFmpeg pipe write failed: {e}"
if stderr:
msg += f"\nffmpeg stderr: {(stderr or b'').decode(errors='ignore')[:1000]}"
raise BrokenPipeError(msg)
def close(self):
if self.proc is None:
return
try:
if self.proc.stdin:
try:
self.proc.stdin.flush()
except Exception:
pass
try:
self.proc.stdin.close()
except Exception:
pass
# drain a bit of stderr for logs
if self.proc.stderr:
try:
err = self.proc.stderr.read()
if err:
self.log.debug("FFmpeg stderr (tail): %s", err.decode(errors="ignore")[-2000:])
except Exception:
pass
self.proc.wait(timeout=10)
except Exception:
try:
self.proc.kill()
except Exception:
pass
finally:
self.proc = None
class CoreVideoProcessor:
"""
Minimal, safe implementation used by core/app.py.
It relies on a models provider (e.g., ModelLoader) that implements:
- get_sam2()
- get_matanyone()
and uses utils.cv_processing for the pipeline.
Supports progress callback and cancellation via stop_event.
"""
def __init__(self, config: Optional[ProcessorConfig] = None, models: Optional[Any] = None):
self.log = _log
self.config = config or ProcessorConfig()
self.models = models # do NOT load here; core/app handles loading
if self.models is None:
self.log.warning("CoreVideoProcessor initialized without a models provider; will use fallbacks.")
self._ffmpeg = shutil.which("ffmpeg")
# state for temporal smoothing
self._prev_mask: Optional[np.ndarray] = None
# ---------- mask post-processing (stability + crispness) ----------
def _iou(self, a: np.ndarray, b: np.ndarray, thr: float = 0.5) -> float:
a_bin = (a >= thr).astype(np.uint8)
b_bin = (b >= thr).astype(np.uint8)
inter = np.count_nonzero(cv2.bitwise_and(a_bin, b_bin))
union = np.count_nonzero(cv2.bitwise_or(a_bin, b_bin))
return (inter / union) if union else 0.0
def _harden(self, m: np.ndarray) -> np.ndarray:
# optional gamma
g = float(self.config.mask_gamma)
if abs(g - 1.0) > 1e-6:
m = np.clip(m, 0, 1) ** g
lo = float(self.config.hard_low)
hi = float(self.config.hard_high)
if hi > lo + 1e-6:
m = (m - lo) / (hi - lo)
m = np.clip(m, 0.0, 1.0)
# pad edges then tiny blur
k = int(self.config.dilate_px)
if k > 0:
se = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2*k+1, 2*k+1))
m = cv2.dilate(m, se, iterations=1)
eb = int(self.config.edge_blur_px)
if eb > 0:
m = cv2.GaussianBlur(m, (2*eb+1, 2*eb+1), 0)
return np.clip(m, 0.0, 1.0)
def _stabilize(self, m: np.ndarray) -> np.ndarray:
if self._prev_mask is None:
self._prev_mask = m
return m
# outlier rejection
if self._iou(self._prev_mask, m, 0.5) < float(self.config.min_iou_to_accept):
# ignore this frame's mask β keep previous
return self._prev_mask
# EMA
a = float(self.config.temporal_ema_alpha)
m_ema = a * self._prev_mask + (1.0 - a) * m
self._prev_mask = m_ema
return m_ema
# ---------- Single frame ----------
def process_frame(self, frame_bgr: np.ndarray, background_rgb: np.ndarray) -> Dict[str, Any]:
"""
Process one frame:
- optionally downscale for model work,
- segment + refine,
- temporal stabilize + harden,
- upsample mask,
- composite full-res.
Returns dict with composited frame (BGR for writer) and mask (H,W float).
"""
H, W = frame_bgr.shape[:2]
max_side = max(H, W)
scale = 1.0
proc_frame_bgr = frame_bgr
# Model-only downscale
if self.config.max_model_size and max_side > self.config.max_model_size:
scale = self.config.max_model_size / float(max_side)
newW = int(round(W * scale))
newH = int(round(H * scale))
proc_frame_bgr = cv2.resize(frame_bgr, (newW, newH), interpolation=cv2.INTER_AREA)
self.log.debug(f"Model-only downscale: {W}x{H} -> {newW}x{newH} (scale={scale:.3f})")
# RGB for models
proc_frame_rgb = cv2.cvtColor(proc_frame_bgr, cv2.COLOR_BGR2RGB)
predictor = None
try:
if self.models and hasattr(self.models, "get_sam2"):
predictor = self.models.get_sam2()
except Exception as e:
self.log.warning(f"SAM2 predictor unavailable: {e}")
# 1) segmentation (with internal fallbacks)
mask_small = segment_person_hq(proc_frame_rgb, predictor, use_sam2=True)
# 2) refinement (MatAnyOne if available)
matanyone = None
try:
if self.models and hasattr(self.models, "get_matanyone"):
matanyone = self.models.get_matanyone()
except Exception as e:
self.log.warning(f"MatAnyOne unavailable: {e}")
# IMPORTANT: call order is (frame, mask, matanyone=...)
mask_small_ref = refine_mask_hq(proc_frame_rgb, mask_small, matanyone=matanyone, use_matanyone=True)
# Stabilize + harden at model scale
mask_small_ref = np.clip(mask_small_ref.astype(np.float32), 0.0, 1.0)
mask_stable = self._stabilize(mask_small_ref)
mask_stable = self._harden(mask_stable)
# Upsample mask back to full-res
if scale != 1.0:
mask_full = cv2.resize(mask_stable, (W, H), interpolation=cv2.INTER_LINEAR)
else:
mask_full = mask_stable
# 3) compositing (helpers expect RGB inputs; return RGB)
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
out_rgb = replace_background_hq(frame_rgb, mask_full, background_rgb)
# Convert to BGR for writer
out_bgr = cv2.cvtColor(out_rgb, cv2.COLOR_RGB2BGR)
return {"frame": out_bgr, "mask": mask_full}
# ---------- Build background once per video ----------
def _prepare_background_from_config(
self,
bg_config: Optional[Dict[str, Any]],
width: int,
height: int
) -> np.ndarray:
"""
Accepts either:
- {"custom_path": "/path/to/image.png"} β load image (RGB out)
- {"background_choice": "office"} β preset
- {"gradient": {type,start,end,angle_deg}} β generated gradient
Returns RGB np.uint8
"""
# 1) custom image?
if bg_config and bg_config.get("custom_path"):
path = bg_config["custom_path"]
img_bgr = cv2.imread(path, cv2.IMREAD_COLOR)
if img_bgr is None:
self.log.warning(f"Custom background at '{path}' could not be read. Falling back to preset.")
else:
img_bgr = cv2.resize(img_bgr, (width, height), interpolation=cv2.INTER_LANCZOS4)
return cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
# 2) gradient?
if bg_config and isinstance(bg_config.get("gradient"), dict):
try:
return _create_gradient_background_local(bg_config["gradient"], width, height)
except Exception as e:
self.log.warning(f"Gradient generation failed: {e}. Falling back to preset.")
# 3) preset (explicit choice or default)
choice = None
if bg_config and "background_choice" in bg_config:
choice = bg_config["background_choice"]
if not choice:
choice = self.config.background_preset
if choice not in PROFESSIONAL_BACKGROUNDS:
self.log.warning(f"Unknown background preset '{choice}'; using 'office'.")
choice = "office"
return create_professional_background(choice, width, height) # RGB
# ---------- Full video ----------
def process_video(
self,
input_path: str,
output_path: str,
bg_config: Optional[Dict[str, Any]] = None,
progress_callback: Optional[Callable[[int, int, float], None]] = None,
stop_event: Optional[threading.Event] = None
) -> Dict[str, Any]:
"""
Process a full video with live progress and optional cancel.
progress_callback(current_frame, total_frames, fps_live)
"""
ok, msg = validate_video_file(input_path)
if not ok:
raise ValueError(f"Invalid or unreadable video: {msg}")
cap = cv2.VideoCapture(input_path)
if not cap.isOpened():
raise RuntimeError(f"Could not open video: {input_path}")
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps_out = self.config.write_fps or (fps if fps and fps > 0 else 25.0)
# Background once (RGB)
background_rgb = self._prepare_background_from_config(bg_config, width, height)
# reset temporal state for a new video
self._prev_mask = None
# Writer selection
ffmpeg_pipe: _FFmpegPipe | None = None
writer: cv2.VideoWriter | None = None
ffmpeg_failed_reason = None
if self.config.use_nvenc and self._ffmpeg:
try:
ffmpeg_pipe = _FFmpegPipe(width, height, float(fps_out), output_path, self.config, log=self.log)
except Exception as e:
ffmpeg_failed_reason = str(e)
self.log.warning("FFmpeg NVENC pipeline unavailable. Falling back to OpenCV. Reason: %s", e)
if ffmpeg_pipe is None:
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
writer = cv2.VideoWriter(output_path, fourcc, float(fps_out), (width, height))
if not writer.isOpened():
cap.release()
raise RuntimeError(f"Could not open VideoWriter for: {output_path}")
frame_count = 0
start_time = time.time()
try:
while True:
ret, frame_bgr = cap.read()
if not ret:
break
if stop_event is not None and stop_event.is_set():
self.log.info("Processing stopped by user request.")
break
# Process single frame
result = self.process_frame(frame_bgr, background_rgb)
out_bgr = result["frame"]
out_bgr = np.ascontiguousarray(out_bgr) # ensure contiguous for tobytes()
# Write
if ffmpeg_pipe is not None:
try:
ffmpeg_pipe.write(out_bgr)
except Exception as e:
# Switch to OpenCV writer mid-run and continue
self.log.warning("Switching to OpenCV writer after FFmpeg error at frame %d: %s", frame_count, e)
try:
ffmpeg_pipe.close()
except Exception:
pass
ffmpeg_pipe = None
if writer is None:
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
writer = cv2.VideoWriter(output_path, fourcc, float(fps_out), (width, height))
if not writer.isOpened():
raise RuntimeError(f"FFmpeg failed and VideoWriter could not open: {output_path}")
writer.write(out_bgr)
else:
writer.write(out_bgr)
frame_count += 1
# Progress
if progress_callback:
elapsed = time.time() - start_time
fps_live = frame_count / elapsed if elapsed > 0 else 0.0
try:
progress_callback(frame_count, total_frames, fps_live)
except Exception:
pass
finally:
cap.release()
if writer is not None:
writer.release()
if ffmpeg_pipe is not None:
try:
ffmpeg_pipe.close()
except Exception:
pass
if ffmpeg_failed_reason:
self.log.info("Completed via OpenCV writer (FFmpeg initially failed): %s", ffmpeg_failed_reason)
self.log.info("Processed %d frames β %s", frame_count, output_path)
return {
"frames": frame_count,
"width": width,
"height": height,
"fps_out": float(fps_out),
"output_path": output_path,
}
# Backward-compat alias used elsewhere
VideoProcessor = CoreVideoProcessor
|