File size: 14,460 Bytes
ad645ee 2167778 d034be2 2167778 ee38ee4 69bef1e ee38ee4 f4b2697 ee38ee4 d034be2 44d164b ee38ee4 44d164b ee38ee4 c268795 f4b2697 d034be2 1c5f026 d034be2 69bef1e d034be2 2167778 ee38ee4 2167778 ee38ee4 d034be2 53a282c ee38ee4 d034be2 1c5f026 0da8fe8 1c5f026 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 69bef1e ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 62d5d89 1c5f026 d034be2 62d5d89 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 1c5f026 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 69bef1e ee38ee4 4d0185c 1c5f026 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 d034be2 69bef1e d034be2 ee38ee4 69bef1e d034be2 ee38ee4 d034be2 ee38ee4 69bef1e ee38ee4 d034be2 ee38ee4 69bef1e ee38ee4 d034be2 ee38ee4 69bef1e ee38ee4 d034be2 ee38ee4 69bef1e ee38ee4 69bef1e ee38ee4 69bef1e ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 ad645ee ee38ee4 c268795 d034be2 f4b2697 2167778 82f3861 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
#!/usr/bin/env python3
"""
Video Background Replacement - Main Application Entry Point
Refactored modular architecture - orchestrates specialized components
This file has been refactored from a monolithic 600+ line structure into
a clean orchestration layer that coordinates specialized modules:
- config: Application configuration and environment variables
- device_manager: Hardware detection and optimization
- memory_manager: Memory and GPU resource management
- model_loader: AI model loading and validation
- video_processor: Core video processing pipeline
- audio_processor: Audio track handling and FFmpeg operations
- progress_tracker: Progress monitoring and ETA calculations
- exceptions: Custom exception classes for better error handling
"""
import os
import logging
import threading
from pathlib import Path
from typing import Optional, Tuple, Dict, Any, Callable
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Apply Gradio schema patch early (before other imports)
try:
import gradio_client.utils as gc_utils
original_get_type = gc_utils.get_type
def patched_get_type(schema):
if not isinstance(schema, dict):
if isinstance(schema, bool):
return "boolean"
if isinstance(schema, str):
return "string"
if isinstance(schema, (int, float)):
return "number"
return "string"
return original_get_type(schema)
gc_utils.get_type = patched_get_type
logger.info("Gradio schema patch applied successfully")
except Exception as e:
logger.error(f"Gradio patch failed: {e}")
# Import modular components
import app_config
import device_manager
import memory_manager
import model_loader
import video_processor
import audio_processor
import progress_tracker
import exceptions
# Import utilities (existing)
from utilities import (
segment_person_hq,
refine_mask_hq,
replace_background_hq,
create_professional_background,
PROFESSIONAL_BACKGROUNDS,
validate_video_file
)
# Import two-stage processor if available
try:
from two_stage_processor import TwoStageProcessor, CHROMA_PRESETS
TWO_STAGE_AVAILABLE = True
except ImportError:
TWO_STAGE_AVAILABLE = False
CHROMA_PRESETS = {'standard': {}}
class VideoProcessor:
"""
Main video processing orchestrator - coordinates all specialized components
"""
def __init__(self):
"""Initialize the video processor with all required components"""
self.config = app_config.ProcessingConfig()
self.device_manager = device_manager.DeviceManager()
self.memory_manager = memory_manager.MemoryManager(self.device_manager.get_optimal_device())
self.model_loader = model_loader.ModelLoader(self.device_manager, self.memory_manager)
self.audio_processor = audio_processor.AudioProcessor()
# Initialize core processor (will be set up after models load)
self.core_processor = None
self.two_stage_processor = None
# State management
self.models_loaded = False
self.loading_lock = threading.Lock()
self.cancel_event = threading.Event()
logger.info(f"VideoProcessor initialized on device: {self.device_manager.get_optimal_device()}")
def load_models(self, progress_callback: Optional[Callable] = None) -> str:
"""Load and validate all AI models"""
with self.loading_lock:
if self.models_loaded:
return "Models already loaded and validated"
try:
self.cancel_event.clear()
if progress_callback:
progress_callback(0.0, f"Starting model loading on {self.device_manager.get_optimal_device()}")
# Load models using the specialized loader
sam2_predictor, matanyone_model = self.model_loader.load_all_models(
progress_callback=progress_callback,
cancel_event=self.cancel_event
)
if self.cancel_event.is_set():
return "Model loading cancelled"
# Initialize core processor with loaded models - FIXED parameter name
self.core_processor = video_processor.CoreVideoProcessor(
sam2_predictor=sam2_predictor,
matanyone_model=matanyone_model,
config=self.config,
memory_mgr=self.memory_manager
)
# Initialize two-stage processor if available
if TWO_STAGE_AVAILABLE and sam2_predictor and matanyone_model:
try:
self.two_stage_processor = TwoStageProcessor(sam2_predictor, matanyone_model)
logger.info("Two-stage processor initialized")
except Exception as e:
logger.warning(f"Two-stage processor init failed: {e}")
self.models_loaded = True
message = self.model_loader.get_load_summary()
logger.info(message)
return message
except exceptions.ModelLoadingError as e:
self.models_loaded = False
error_msg = f"Model loading failed: {str(e)}"
logger.error(error_msg)
return error_msg
except Exception as e:
self.models_loaded = False
error_msg = f"Unexpected error during model loading: {str(e)}"
logger.error(error_msg)
return error_msg
def process_video(
self,
video_path: str,
background_choice: str,
custom_background_path: Optional[str] = None,
progress_callback: Optional[Callable] = None,
use_two_stage: bool = False,
chroma_preset: str = "standard",
preview_mask: bool = False,
preview_greenscreen: bool = False
) -> Tuple[Optional[str], str]:
"""Process video with the specified parameters"""
if not self.models_loaded or not self.core_processor:
return None, "Models not loaded. Please load models first."
if self.cancel_event.is_set():
return None, "Processing cancelled"
# Validate input file
is_valid, validation_msg = validate_video_file(video_path)
if not is_valid:
return None, f"Invalid video: {validation_msg}"
try:
# Route to appropriate processing method
if use_two_stage and TWO_STAGE_AVAILABLE and self.two_stage_processor:
return self._process_two_stage(
video_path, background_choice, custom_background_path,
progress_callback, chroma_preset
)
else:
return self._process_single_stage(
video_path, background_choice, custom_background_path,
progress_callback, preview_mask, preview_greenscreen
)
except exceptions.VideoProcessingError as e:
logger.error(f"Video processing failed: {e}")
return None, f"Processing failed: {str(e)}"
except Exception as e:
logger.error(f"Unexpected error during video processing: {e}")
return None, f"Unexpected error: {str(e)}"
def _process_single_stage(
self,
video_path: str,
background_choice: str,
custom_background_path: Optional[str],
progress_callback: Optional[Callable],
preview_mask: bool,
preview_greenscreen: bool
) -> Tuple[Optional[str], str]:
"""Process video using single-stage pipeline"""
# Process video using core processor
processed_video_path, process_message = self.core_processor.process_video(
video_path=video_path,
background_choice=background_choice,
custom_background_path=custom_background_path,
progress_callback=progress_callback,
cancel_event=self.cancel_event,
preview_mask=preview_mask,
preview_greenscreen=preview_greenscreen
)
if processed_video_path is None:
return None, process_message
# Add audio if not in preview mode
if not (preview_mask or preview_greenscreen):
final_video_path = self.audio_processor.add_audio_to_video(
original_video=video_path,
processed_video=processed_video_path
)
else:
final_video_path = processed_video_path
success_msg = (
f"{process_message}\n"
f"Background: {background_choice}\n"
f"Mode: Single-stage\n"
f"Device: {self.device_manager.get_optimal_device()}"
)
return final_video_path, success_msg
def _process_two_stage(
self,
video_path: str,
background_choice: str,
custom_background_path: Optional[str],
progress_callback: Optional[Callable],
chroma_preset: str
) -> Tuple[Optional[str], str]:
"""Process video using two-stage pipeline"""
# Get video dimensions for background preparation
import cv2
cap = cv2.VideoCapture(video_path)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
# Prepare background using core processor
background = self.core_processor.prepare_background(
background_choice, custom_background_path, frame_width, frame_height
)
if background is None:
return None, "Failed to prepare background"
# Process with two-stage pipeline
import time
timestamp = int(time.time())
final_output = f"/tmp/twostage_final_{timestamp}.mp4"
chroma_settings = CHROMA_PRESETS.get(chroma_preset, CHROMA_PRESETS['standard'])
result, message = self.two_stage_processor.process_full_pipeline(
video_path,
background,
final_output,
chroma_settings=chroma_settings,
progress_callback=progress_callback
)
if result is None:
return None, message
success_msg = (
f"Two-stage success!\n"
f"Background: {background_choice}\n"
f"Preset: {chroma_preset}\n"
f"Quality: Cinema-grade\n"
f"Device: {self.device_manager.get_optimal_device()}"
)
return result, success_msg
def get_status(self) -> Dict[str, Any]:
"""Get comprehensive status of all components"""
base_status = {
'models_loaded': self.models_loaded,
'two_stage_available': TWO_STAGE_AVAILABLE and self.two_stage_processor is not None,
'device': str(self.device_manager.get_optimal_device()),
'memory_usage': self.memory_manager.get_memory_usage(),
'config': self.config.to_dict()
}
# Add model-specific status if available
if self.model_loader:
base_status.update(self.model_loader.get_status())
# Add processing status if available
if self.core_processor:
base_status.update(self.core_processor.get_status())
return base_status
def cancel_processing(self):
"""Cancel any ongoing processing"""
self.cancel_event.set()
logger.info("Processing cancellation requested")
def cleanup_resources(self):
"""Clean up all resources"""
self.memory_manager.cleanup_aggressive()
if self.model_loader:
self.model_loader.cleanup()
logger.info("Resources cleaned up")
# Global processor instance for application
processor = VideoProcessor()
# Backward compatibility functions for existing UI
def load_models_with_validation(progress_callback: Optional[Callable] = None) -> str:
"""Load models with validation - backward compatibility wrapper"""
return processor.load_models(progress_callback)
def process_video_fixed(
video_path: str,
background_choice: str,
custom_background_path: Optional[str],
progress_callback: Optional[Callable] = None,
use_two_stage: bool = False,
chroma_preset: str = "standard",
preview_mask: bool = False,
preview_greenscreen: bool = False
) -> Tuple[Optional[str], str]:
"""Process video - backward compatibility wrapper"""
return processor.process_video(
video_path, background_choice, custom_background_path,
progress_callback, use_two_stage, chroma_preset,
preview_mask, preview_greenscreen
)
def get_model_status() -> Dict[str, Any]:
"""Get model status - backward compatibility wrapper"""
return processor.get_status()
def get_cache_status() -> Dict[str, Any]:
"""Get cache status - backward compatibility wrapper"""
return processor.get_status()
# For backward compatibility
PROCESS_CANCELLED = processor.cancel_event
def main():
"""Main application entry point"""
try:
logger.info("Starting Video Background Replacement application")
logger.info(f"Device: {processor.device_manager.get_optimal_device()}")
logger.info(f"Two-stage available: {TWO_STAGE_AVAILABLE}")
logger.info("Modular architecture loaded successfully")
# Import and create UI
from ui_components import create_interface
demo = create_interface()
# Launch application
demo.queue().launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True,
debug=False
)
except Exception as e:
logger.error(f"Application startup failed: {e}")
raise
finally:
# Cleanup on exit
processor.cleanup_resources()
if __name__ == "__main__":
main() |