File size: 19,565 Bytes
ad645ee
2167778
1d4a4dd
d034be2
2167778
ee38ee4
d03832f
3b31687
d03832f
ee38ee4
69bef1e
ee38ee4
 
f4b2697
2d694e6
 
 
 
 
 
ee38ee4
d034be2
44d164b
 
 
3b31687
44d164b
 
 
 
 
 
 
 
ee38ee4
44d164b
3b31687
44d164b
ee38ee4
 
c268795
f4b2697
2d694e6
622c422
 
1d4a4dd
2d694e6
1d4a4dd
 
 
 
 
 
2d694e6
d034be2
2d694e6
 
69bef1e
 
 
 
 
 
 
 
d034be2
2167778
8b6446f
2167778
ee38ee4
2167778
ee38ee4
 
e931565
2d694e6
d034be2
 
 
3b31687
2d694e6
d034be2
2d694e6
1d4a4dd
 
3b31687
de2187f
 
3b31687
1d4a4dd
3683887
3b31687
d034be2
 
ee38ee4
3b31687
d034be2
ee38ee4
 
 
3b31687
2d694e6
3b31687
34f4b5d
 
 
 
 
 
 
3b31687
34f4b5d
 
3b31687
34f4b5d
 
 
 
 
 
3b31687
ee38ee4
d034be2
ee38ee4
 
2d694e6
3b31687
ee38ee4
 
3b31687
ee38ee4
2d694e6
3b31687
e931565
 
 
 
 
 
 
3b31687
e931565
 
 
 
3b31687
e931565
 
 
 
 
3b31687
e931565
 
3b31687
e931565
 
 
 
 
 
3b31687
ee38ee4
2d694e6
3b31687
eff70cc
9f4c38c
 
3b31687
eff70cc
9f4c38c
3b31687
a7c3f7d
 
3b31687
eff70cc
1d4a4dd
d034be2
eff70cc
d034be2
3b31687
a7c3f7d
 
9f4c38c
a7c3f7d
eff70cc
a7c3f7d
 
 
 
 
 
 
 
 
 
 
 
 
 
3b31687
ee38ee4
d034be2
3b31687
a7c3f7d
 
804a19f
a7c3f7d
 
3b31687
ee38ee4
2d694e6
3b31687
804a19f
 
 
 
 
1d4a4dd
ee38ee4
2d694e6
ee38ee4
 
d034be2
 
2d694e6
d034be2
 
3b31687
ee38ee4
 
 
 
 
 
 
 
 
2d694e6
ee38ee4
d034be2
3b31687
d034be2
2d694e6
3b31687
ee38ee4
2d694e6
3b31687
34f4b5d
 
3b31687
d034be2
ee38ee4
 
2d694e6
3b31687
ee38ee4
d034be2
a7c3f7d
 
 
3b31687
a7c3f7d
 
3b31687
a7c3f7d
2d694e6
ee38ee4
 
 
69bef1e
a7c3f7d
2d694e6
ee38ee4
 
 
3b31687
1d4a4dd
ee38ee4
2d694e6
d034be2
 
2d694e6
3b31687
ee38ee4
 
 
 
 
 
 
 
 
d034be2
3b31687
5e4e72a
 
 
 
 
 
3b31687
d034be2
5e4e72a
 
 
 
ee38ee4
3b31687
5e4e72a
 
3b31687
d034be2
ee38ee4
d034be2
 
5e4e72a
d034be2
ee38ee4
5e4e72a
3b31687
ee38ee4
5e4e72a
 
2d694e6
 
 
ee38ee4
3b31687
d034be2
3b31687
ee38ee4
 
 
 
 
 
 
 
d034be2
3b31687
a7c3f7d
 
3b31687
d034be2
 
ee38ee4
 
 
 
3b31687
d034be2
 
ee38ee4
 
 
2d694e6
3b31687
ee38ee4
d034be2
ee38ee4
1d4a4dd
 
 
3b31687
ee38ee4
3b31687
a7c3f7d
ee38ee4
 
 
 
 
 
 
3b31687
ee38ee4
 
3b31687
ee38ee4
a7c3f7d
2d694e6
a7c3f7d
 
2d694e6
ee38ee4
3b31687
ee38ee4
3b31687
ee38ee4
d034be2
 
ee38ee4
 
d034be2
ee38ee4
2d694e6
ee38ee4
3b31687
d034be2
 
834dc68
804a19f
 
 
 
 
 
3b31687
d034be2
 
834dc68
3b31687
a7c3f7d
 
 
 
 
3b31687
2d694e6
 
 
3b31687
d034be2
3b31687
ee38ee4
d034be2
ee38ee4
 
3b31687
d034be2
 
 
 
 
 
69bef1e
e931565
d034be2
2d694e6
69bef1e
e931565
2d694e6
ee38ee4
d034be2
ee38ee4
69bef1e
e931565
ee38ee4
 
 
 
 
 
 
 
 
 
d034be2
ee38ee4
 
 
 
 
69bef1e
e931565
ee38ee4
d034be2
ee38ee4
69bef1e
e931565
ee38ee4
d034be2
ee38ee4
69bef1e
e931565
ee38ee4
 
69bef1e
e931565
69bef1e
ee38ee4
69bef1e
2d694e6
d034be2
a7c3f7d
d034be2
3b31687
ee38ee4
2d694e6
ee38ee4
3b31687
 
2d694e6
ee38ee4
 
 
2d694e6
ee38ee4
3b31687
ad645ee
ee38ee4
c268795
d034be2
 
 
f4b2697
e931565
2167778
3b31687
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
#!/usr/bin/env python3
"""
BackgroundFX Pro - Main Application Entry Point
Refactored modular architecture - orchestrates specialized components
"""

import early_env  # <<< centralizes the OMP/torch thread fix; must be first

import os
import logging
import threading
from pathlib import Path
from typing import Optional, Tuple, Dict, Any, Callable

# Configure logging first
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Apply Gradio schema patch early (before other imports)
try:
    import gradio_client.utils as gc_utils
    original_get_type = gc_utils.get_type

    def patched_get_type(schema):
        if not isinstance(schema, dict):
            if isinstance(schema, bool):
                return "boolean"
            if isinstance(schema, str):
                return "string"
            if isinstance(schema, (int, float)):
                return "number"
            return "string"
        return original_get_type(schema)

    gc_utils.get_type = patched_get_type
    logger.info("Gradio schema patch applied successfully")
except Exception as e:
    logger.error(f"Gradio patch failed: {e}")

# Import configuration from new location
from processing.video.video_processor import ProcessorConfig
from config.app_config import get_config

# Import core components from new locations
from core.exceptions import ModelLoadingError, VideoProcessingError
from utils.hardware.device_manager import DeviceManager
from utils.system.memory_manager import MemoryManager
from models.loaders.model_loader import ModelLoader
from processing.video.video_processor import CoreVideoProcessor
from processing.audio.audio_processor import AudioProcessor
from utils.monitoring.progress_tracker import ProgressTracker

# Import existing utilities (temporary during migration)
from utilities import (
    segment_person_hq,
    refine_mask_hq,
    replace_background_hq,
    create_professional_background,
    PROFESSIONAL_BACKGROUNDS,
    validate_video_file
)

# Import two-stage processor if available
try:
    from processing.two_stage.two_stage_processor import TwoStageProcessor, CHROMA_PRESETS
    TWO_STAGE_AVAILABLE = True
except ImportError:
    TWO_STAGE_AVAILABLE = False
    CHROMA_PRESETS = {'standard': {}}


class VideoProcessor:
    """
    Main video processing orchestrator - coordinates all specialized components
    """

    def __init__(self):
        """Initialize the video processor with all required components"""
        self.config = get_config()  # Use singleton config
        self.device_manager = DeviceManager()
        self.memory_manager = MemoryManager(self.device_manager.get_optimal_device())

        # Initialize ModelLoader with DeviceManager and MemoryManager (as per actual implementation)
        self.model_loader = ModelLoader(self.device_manager, self.memory_manager)

        self.audio_processor = AudioProcessor()
        self.progress_tracker = None

        # Initialize core processor (will be set up after models load)
        self.core_processor = None
        self.two_stage_processor = None

        # State management
        self.models_loaded = False
        self.loading_lock = threading.Lock()
        self.cancel_event = threading.Event()

        logger.info(f"VideoProcessor initialized on device: {self.device_manager.get_optimal_device()}")

    def _initialize_progress_tracker(self, video_path: str, progress_callback: Optional[Callable] = None):
        """Initialize progress tracker with video frame count"""
        try:
            import cv2
            cap = cv2.VideoCapture(video_path)
            total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
            cap.release()

            if total_frames <= 0:
                total_frames = 100  # Fallback estimate

            self.progress_tracker = ProgressTracker(total_frames, progress_callback)
            logger.info(f"Progress tracker initialized for {total_frames} frames")
        except Exception as e:
            logger.warning(f"Could not initialize progress tracker: {e}")
            # Fallback to basic tracker
            self.progress_tracker = ProgressTracker(100, progress_callback)

    def load_models(self, progress_callback: Optional[Callable] = None) -> str:
        """Load and validate all AI models"""
        with self.loading_lock:
            if self.models_loaded:
                return "Models already loaded and validated"

            try:
                self.cancel_event.clear()

                if progress_callback:
                    progress_callback(0.0, f"Starting model loading on {self.device_manager.get_optimal_device()}")

                # Add detailed debugging for the IndexError
                try:
                    # Load models using load_all_models which returns tuple of (LoadedModel, LoadedModel)
                    sam2_result, matanyone_result = self.model_loader.load_all_models(
                        progress_callback=progress_callback,
                        cancel_event=self.cancel_event
                    )

                except IndexError as e:
                    import traceback
                    logger.error(f"IndexError in load_all_models: {e}")
                    logger.error(f"Full traceback:\n{traceback.format_exc()}")

                    # Get more context about where exactly the error happened
                    tb = traceback.extract_tb(e.__traceback__)
                    for frame in tb:
                        logger.error(f"  File: {frame.filename}, Line: {frame.lineno}, Function: {frame.name}")
                        logger.error(f"    Code: {frame.line}")

                    # Re-raise with more context
                    raise ModelLoadingError(f"Model loading failed with IndexError at line {tb[-1].lineno}: {e}")

                except Exception as e:
                    import traceback
                    logger.error(f"Unexpected error in load_all_models: {e}")
                    logger.error(f"Error type: {type(e).__name__}")
                    logger.error(f"Full traceback:\n{traceback.format_exc()}")
                    raise

                if self.cancel_event.is_set():
                    return "Model loading cancelled"

                # Extract actual models from LoadedModel wrappers for two-stage processor
                sam2_predictor = sam2_result.model if sam2_result else None
                matanyone_model = matanyone_result.model if matanyone_result else None

                # Check if at least one model loaded successfully
                success = sam2_predictor is not None or matanyone_model is not None

                if not success:
                    return "Model loading failed - check logs for details"

                # Initialize core processor with the model loader (it expects a models object)
                self.core_processor = CoreVideoProcessor(
                    config=self.config,
                    models=self.model_loader  # Pass the whole model_loader object
                )

                # Initialize two-stage processor if available and models loaded
                if TWO_STAGE_AVAILABLE:
                    if sam2_predictor is not None or matanyone_model is not None:
                        try:
                            # Two-stage processor needs the actual models
                            self.two_stage_processor = TwoStageProcessor(
                                sam2_predictor=sam2_predictor,
                                matanyone_model=matanyone_model
                            )
                            logger.info("✅ Two-stage processor initialized with AI models")
                        except Exception as e:
                            logger.warning(f"Two-stage processor init failed: {e}")
                            self.two_stage_processor = None
                    else:
                        logger.warning("Two-stage processor not initialized - models not available")
                        if sam2_predictor is None:
                            logger.warning("  - SAM2 predictor is None")
                        if matanyone_model is None:
                            logger.warning("  - MatAnyone model is None")

                self.models_loaded = True
                message = self.model_loader.get_load_summary()

                # Add two-stage status to message
                if self.two_stage_processor is not None:
                    message += "\n✅ Two-stage processor ready with AI models"
                else:
                    message += "\n⚠️ Two-stage processor not available"

                logger.info(message)
                return message

            except AttributeError as e:
                self.models_loaded = False
                error_msg = f"Model loading failed - method not found: {str(e)}"
                logger.error(error_msg)
                return error_msg
            except ModelLoadingError as e:
                self.models_loaded = False
                error_msg = f"Model loading failed: {str(e)}"
                logger.error(error_msg)
                return error_msg
            except Exception as e:
                self.models_loaded = False
                error_msg = f"Unexpected error during model loading: {str(e)}"
                logger.error(error_msg)
                return error_msg

    def process_video(
        self,
        video_path: str,
        background_choice: str,
        custom_background_path: Optional[str] = None,
        progress_callback: Optional[Callable] = None,
        use_two_stage: bool = False,
        chroma_preset: str = "standard",
        preview_mask: bool = False,
        preview_greenscreen: bool = False
    ) -> Tuple[Optional[str], str]:
        """Process video with the specified parameters"""

        if not self.models_loaded or not self.core_processor:
            return None, "Models not loaded. Please load models first."

        if self.cancel_event.is_set():
            return None, "Processing cancelled"

        # Initialize progress tracker with video frame count
        self._initialize_progress_tracker(video_path, progress_callback)

        # Validate input file
        is_valid, validation_msg = validate_video_file(video_path)
        if not is_valid:
            return None, f"Invalid video: {validation_msg}"

        try:
            # Route to appropriate processing method
            if use_two_stage:
                if not TWO_STAGE_AVAILABLE:
                    return None, "Two-stage processing not available - module not found"

                if self.two_stage_processor is None:
                    return None, "Two-stage processor not initialized - models may not be loaded properly"

                logger.info("Using two-stage processing pipeline with AI models")
                return self._process_two_stage(
                    video_path, background_choice, custom_background_path,
                    progress_callback, chroma_preset
                )
            else:
                logger.info("Using single-stage processing pipeline")
                return self._process_single_stage(
                    video_path, background_choice, custom_background_path,
                    progress_callback, preview_mask, preview_greenscreen
                )

        except VideoProcessingError as e:
            logger.error(f"Video processing failed: {e}")
            return None, f"Processing failed: {str(e)}"
        except Exception as e:
            logger.error(f"Unexpected error during video processing: {e}")
            return None, f"Unexpected error: {str(e)}"

    def _process_single_stage(
        self,
        video_path: str,
        background_choice: str,
        custom_background_path: Optional[str],
        progress_callback: Optional[Callable],
        preview_mask: bool,
        preview_greenscreen: bool
    ) -> Tuple[Optional[str], str]:
        """Process video using single-stage pipeline"""

        # Generate output path
        import time
        timestamp = int(time.time())
        output_dir = Path(self.config.output_dir) / "single_stage"
        output_dir.mkdir(parents=True, exist_ok=True)
        output_path = str(output_dir / f"processed_{timestamp}.mp4")

        # Process video using core processor
        result = self.core_processor.process_video(
            input_path=video_path,
            output_path=output_path,
            bg_config={'background_choice': background_choice, 'custom_path': custom_background_path}
        )

        if not result:
            return None, "Video processing failed"

        # Add audio if not in preview mode
        if not (preview_mask or preview_greenscreen):
            final_video_path = self.audio_processor.add_audio_to_video(
                original_video=video_path,
                processed_video=output_path
            )
        else:
            final_video_path = output_path

        success_msg = (
            f"Processing completed successfully!\n"
            f"Frames processed: {result.get('frames', 'unknown')}\n"
            f"Background: {background_choice}\n"
            f"Mode: Single-stage\n"
            f"Device: {self.device_manager.get_optimal_device()}"
        )

        return final_video_path, success_msg

    def _process_two_stage(
        self,
        video_path: str,
        background_choice: str,
        custom_background_path: Optional[str],
        progress_callback: Optional[Callable],
        chroma_preset: str
    ) -> Tuple[Optional[str], str]:
        """Process video using two-stage pipeline"""

        if self.two_stage_processor is None:
            return None, "Two-stage processor not available"

        # Get video dimensions for background preparation
        import cv2
        cap = cv2.VideoCapture(video_path)
        frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        cap.release()

        # Prepare background using core processor
        background = self.core_processor.prepare_background(
            background_choice, custom_background_path, frame_width, frame_height
        )
        if background is None:
            return None, "Failed to prepare background"

        # Process with two-stage pipeline
        import time
        timestamp = int(time.time())
        output_dir = Path(self.config.output_dir) / "two_stage"
        output_dir.mkdir(parents=True, exist_ok=True)
        final_output = str(output_dir / f"final_{timestamp}.mp4")

        chroma_settings = CHROMA_PRESETS.get(chroma_preset, CHROMA_PRESETS['standard'])

        logger.info(f"Starting two-stage processing with chroma preset: {chroma_preset}")
        result, message = self.two_stage_processor.process_full_pipeline(
            video_path,
            background,
            final_output,
            chroma_settings=chroma_settings,
            progress_callback=progress_callback
        )

        if result is None:
            return None, message

        success_msg = (
            f"Two-stage processing completed!\n"
            f"Background: {background_choice}\n"
            f"Chroma Preset: {chroma_preset}\n"
            f"Quality: Cinema-grade with AI models\n"
            f"Device: {self.device_manager.get_optimal_device()}"
        )

        return result, success_msg

    def get_status(self) -> Dict[str, Any]:
        """Get comprehensive status of all components"""
        base_status = {
            'models_loaded': self.models_loaded,
            'two_stage_available': TWO_STAGE_AVAILABLE and self.two_stage_processor is not None,
            'device': str(self.device_manager.get_optimal_device()),
            'memory_usage': self.memory_manager.get_memory_usage(),
            'config': self.config.to_dict()
        }

        # Add model-specific status if available
        if self.model_loader:
            base_status['model_loader_available'] = True
            try:
                base_status['sam2_loaded'] = self.model_loader.get_sam2() is not None
                base_status['matanyone_loaded'] = self.model_loader.get_matanyone() is not None
            except AttributeError:
                base_status['sam2_loaded'] = False
                base_status['matanyone_loaded'] = False

        # Add processing status if available
        if self.core_processor:
            base_status['core_processor_loaded'] = True

        # Add two-stage processor status
        if self.two_stage_processor:
            base_status['two_stage_processor_ready'] = True
        else:
            base_status['two_stage_processor_ready'] = False

        # Add progress tracking if available
        if self.progress_tracker:
            base_status['progress'] = self.progress_tracker.get_all_progress()

        return base_status

    def cancel_processing(self):
        """Cancel any ongoing processing"""
        self.cancel_event.set()
        logger.info("Processing cancellation requested")

    def cleanup_resources(self):
        """Clean up all resources"""
        self.memory_manager.cleanup_aggressive()
        if self.model_loader:
            self.model_loader.cleanup()
        logger.info("Resources cleaned up")


# Global processor instance for application
processor = VideoProcessor()


# Backward compatibility functions for existing UI
def load_models_with_validation(progress_callback: Optional[Callable] = None) -> str:
    """Load models with validation - backward compatibility wrapper"""
    return processor.load_models(progress_callback)


def process_video_fixed(
    video_path: str,
    background_choice: str,
    custom_background_path: Optional[str],
    progress_callback: Optional[Callable] = None,
    use_two_stage: bool = False,
    chroma_preset: str = "standard",
    preview_mask: bool = False,
    preview_greenscreen: bool = False
) -> Tuple[Optional[str], str]:
    """Process video - backward compatibility wrapper"""
    return processor.process_video(
        video_path, background_choice, custom_background_path,
        progress_callback, use_two_stage, chroma_preset,
        preview_mask, preview_greenscreen
    )


def get_model_status() -> Dict[str, Any]:
    """Get model status - backward compatibility wrapper"""
    return processor.get_status()


def get_cache_status() -> Dict[str, Any]:
    """Get cache status - backward compatibility wrapper"""
    return processor.get_status()


# For backward compatibility
PROCESS_CANCELLED = processor.cancel_event


def main():
    """Main application entry point"""
    try:
        logger.info("Starting Video Background Replacement application")
        logger.info(f"Device: {processor.device_manager.get_optimal_device()}")
        logger.info(f"Two-stage module available: {TWO_STAGE_AVAILABLE}")
        logger.info("Modular architecture loaded successfully")

        # Import and create UI
        from ui_components import create_interface
        demo = create_interface()

        # Launch application (no share=True on Spaces)
        demo.queue().launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            debug=False
        )

    except Exception as e:
        logger.error(f"Application startup failed: {e}")
        raise
    finally:
        # Cleanup on exit
        processor.cleanup_resources()


if __name__ == "__main__":
    main()