File size: 19,565 Bytes
ad645ee 2167778 1d4a4dd d034be2 2167778 ee38ee4 d03832f 3b31687 d03832f ee38ee4 69bef1e ee38ee4 f4b2697 2d694e6 ee38ee4 d034be2 44d164b 3b31687 44d164b ee38ee4 44d164b 3b31687 44d164b ee38ee4 c268795 f4b2697 2d694e6 622c422 1d4a4dd 2d694e6 1d4a4dd 2d694e6 d034be2 2d694e6 69bef1e d034be2 2167778 8b6446f 2167778 ee38ee4 2167778 ee38ee4 e931565 2d694e6 d034be2 3b31687 2d694e6 d034be2 2d694e6 1d4a4dd 3b31687 de2187f 3b31687 1d4a4dd 3683887 3b31687 d034be2 ee38ee4 3b31687 d034be2 ee38ee4 3b31687 2d694e6 3b31687 34f4b5d 3b31687 34f4b5d 3b31687 34f4b5d 3b31687 ee38ee4 d034be2 ee38ee4 2d694e6 3b31687 ee38ee4 3b31687 ee38ee4 2d694e6 3b31687 e931565 3b31687 e931565 3b31687 e931565 3b31687 e931565 3b31687 e931565 3b31687 ee38ee4 2d694e6 3b31687 eff70cc 9f4c38c 3b31687 eff70cc 9f4c38c 3b31687 a7c3f7d 3b31687 eff70cc 1d4a4dd d034be2 eff70cc d034be2 3b31687 a7c3f7d 9f4c38c a7c3f7d eff70cc a7c3f7d 3b31687 ee38ee4 d034be2 3b31687 a7c3f7d 804a19f a7c3f7d 3b31687 ee38ee4 2d694e6 3b31687 804a19f 1d4a4dd ee38ee4 2d694e6 ee38ee4 d034be2 2d694e6 d034be2 3b31687 ee38ee4 2d694e6 ee38ee4 d034be2 3b31687 d034be2 2d694e6 3b31687 ee38ee4 2d694e6 3b31687 34f4b5d 3b31687 d034be2 ee38ee4 2d694e6 3b31687 ee38ee4 d034be2 a7c3f7d 3b31687 a7c3f7d 3b31687 a7c3f7d 2d694e6 ee38ee4 69bef1e a7c3f7d 2d694e6 ee38ee4 3b31687 1d4a4dd ee38ee4 2d694e6 d034be2 2d694e6 3b31687 ee38ee4 d034be2 3b31687 5e4e72a 3b31687 d034be2 5e4e72a ee38ee4 3b31687 5e4e72a 3b31687 d034be2 ee38ee4 d034be2 5e4e72a d034be2 ee38ee4 5e4e72a 3b31687 ee38ee4 5e4e72a 2d694e6 ee38ee4 3b31687 d034be2 3b31687 ee38ee4 d034be2 3b31687 a7c3f7d 3b31687 d034be2 ee38ee4 3b31687 d034be2 ee38ee4 2d694e6 3b31687 ee38ee4 d034be2 ee38ee4 1d4a4dd 3b31687 ee38ee4 3b31687 a7c3f7d ee38ee4 3b31687 ee38ee4 3b31687 ee38ee4 a7c3f7d 2d694e6 a7c3f7d 2d694e6 ee38ee4 3b31687 ee38ee4 3b31687 ee38ee4 d034be2 ee38ee4 d034be2 ee38ee4 2d694e6 ee38ee4 3b31687 d034be2 834dc68 804a19f 3b31687 d034be2 834dc68 3b31687 a7c3f7d 3b31687 2d694e6 3b31687 d034be2 3b31687 ee38ee4 d034be2 ee38ee4 3b31687 d034be2 69bef1e e931565 d034be2 2d694e6 69bef1e e931565 2d694e6 ee38ee4 d034be2 ee38ee4 69bef1e e931565 ee38ee4 d034be2 ee38ee4 69bef1e e931565 ee38ee4 d034be2 ee38ee4 69bef1e e931565 ee38ee4 d034be2 ee38ee4 69bef1e e931565 ee38ee4 69bef1e e931565 69bef1e ee38ee4 69bef1e 2d694e6 d034be2 a7c3f7d d034be2 3b31687 ee38ee4 2d694e6 ee38ee4 3b31687 2d694e6 ee38ee4 2d694e6 ee38ee4 3b31687 ad645ee ee38ee4 c268795 d034be2 f4b2697 e931565 2167778 3b31687 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
#!/usr/bin/env python3
"""
BackgroundFX Pro - Main Application Entry Point
Refactored modular architecture - orchestrates specialized components
"""
import early_env # <<< centralizes the OMP/torch thread fix; must be first
import os
import logging
import threading
from pathlib import Path
from typing import Optional, Tuple, Dict, Any, Callable
# Configure logging first
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Apply Gradio schema patch early (before other imports)
try:
import gradio_client.utils as gc_utils
original_get_type = gc_utils.get_type
def patched_get_type(schema):
if not isinstance(schema, dict):
if isinstance(schema, bool):
return "boolean"
if isinstance(schema, str):
return "string"
if isinstance(schema, (int, float)):
return "number"
return "string"
return original_get_type(schema)
gc_utils.get_type = patched_get_type
logger.info("Gradio schema patch applied successfully")
except Exception as e:
logger.error(f"Gradio patch failed: {e}")
# Import configuration from new location
from processing.video.video_processor import ProcessorConfig
from config.app_config import get_config
# Import core components from new locations
from core.exceptions import ModelLoadingError, VideoProcessingError
from utils.hardware.device_manager import DeviceManager
from utils.system.memory_manager import MemoryManager
from models.loaders.model_loader import ModelLoader
from processing.video.video_processor import CoreVideoProcessor
from processing.audio.audio_processor import AudioProcessor
from utils.monitoring.progress_tracker import ProgressTracker
# Import existing utilities (temporary during migration)
from utilities import (
segment_person_hq,
refine_mask_hq,
replace_background_hq,
create_professional_background,
PROFESSIONAL_BACKGROUNDS,
validate_video_file
)
# Import two-stage processor if available
try:
from processing.two_stage.two_stage_processor import TwoStageProcessor, CHROMA_PRESETS
TWO_STAGE_AVAILABLE = True
except ImportError:
TWO_STAGE_AVAILABLE = False
CHROMA_PRESETS = {'standard': {}}
class VideoProcessor:
"""
Main video processing orchestrator - coordinates all specialized components
"""
def __init__(self):
"""Initialize the video processor with all required components"""
self.config = get_config() # Use singleton config
self.device_manager = DeviceManager()
self.memory_manager = MemoryManager(self.device_manager.get_optimal_device())
# Initialize ModelLoader with DeviceManager and MemoryManager (as per actual implementation)
self.model_loader = ModelLoader(self.device_manager, self.memory_manager)
self.audio_processor = AudioProcessor()
self.progress_tracker = None
# Initialize core processor (will be set up after models load)
self.core_processor = None
self.two_stage_processor = None
# State management
self.models_loaded = False
self.loading_lock = threading.Lock()
self.cancel_event = threading.Event()
logger.info(f"VideoProcessor initialized on device: {self.device_manager.get_optimal_device()}")
def _initialize_progress_tracker(self, video_path: str, progress_callback: Optional[Callable] = None):
"""Initialize progress tracker with video frame count"""
try:
import cv2
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
if total_frames <= 0:
total_frames = 100 # Fallback estimate
self.progress_tracker = ProgressTracker(total_frames, progress_callback)
logger.info(f"Progress tracker initialized for {total_frames} frames")
except Exception as e:
logger.warning(f"Could not initialize progress tracker: {e}")
# Fallback to basic tracker
self.progress_tracker = ProgressTracker(100, progress_callback)
def load_models(self, progress_callback: Optional[Callable] = None) -> str:
"""Load and validate all AI models"""
with self.loading_lock:
if self.models_loaded:
return "Models already loaded and validated"
try:
self.cancel_event.clear()
if progress_callback:
progress_callback(0.0, f"Starting model loading on {self.device_manager.get_optimal_device()}")
# Add detailed debugging for the IndexError
try:
# Load models using load_all_models which returns tuple of (LoadedModel, LoadedModel)
sam2_result, matanyone_result = self.model_loader.load_all_models(
progress_callback=progress_callback,
cancel_event=self.cancel_event
)
except IndexError as e:
import traceback
logger.error(f"IndexError in load_all_models: {e}")
logger.error(f"Full traceback:\n{traceback.format_exc()}")
# Get more context about where exactly the error happened
tb = traceback.extract_tb(e.__traceback__)
for frame in tb:
logger.error(f" File: {frame.filename}, Line: {frame.lineno}, Function: {frame.name}")
logger.error(f" Code: {frame.line}")
# Re-raise with more context
raise ModelLoadingError(f"Model loading failed with IndexError at line {tb[-1].lineno}: {e}")
except Exception as e:
import traceback
logger.error(f"Unexpected error in load_all_models: {e}")
logger.error(f"Error type: {type(e).__name__}")
logger.error(f"Full traceback:\n{traceback.format_exc()}")
raise
if self.cancel_event.is_set():
return "Model loading cancelled"
# Extract actual models from LoadedModel wrappers for two-stage processor
sam2_predictor = sam2_result.model if sam2_result else None
matanyone_model = matanyone_result.model if matanyone_result else None
# Check if at least one model loaded successfully
success = sam2_predictor is not None or matanyone_model is not None
if not success:
return "Model loading failed - check logs for details"
# Initialize core processor with the model loader (it expects a models object)
self.core_processor = CoreVideoProcessor(
config=self.config,
models=self.model_loader # Pass the whole model_loader object
)
# Initialize two-stage processor if available and models loaded
if TWO_STAGE_AVAILABLE:
if sam2_predictor is not None or matanyone_model is not None:
try:
# Two-stage processor needs the actual models
self.two_stage_processor = TwoStageProcessor(
sam2_predictor=sam2_predictor,
matanyone_model=matanyone_model
)
logger.info("✅ Two-stage processor initialized with AI models")
except Exception as e:
logger.warning(f"Two-stage processor init failed: {e}")
self.two_stage_processor = None
else:
logger.warning("Two-stage processor not initialized - models not available")
if sam2_predictor is None:
logger.warning(" - SAM2 predictor is None")
if matanyone_model is None:
logger.warning(" - MatAnyone model is None")
self.models_loaded = True
message = self.model_loader.get_load_summary()
# Add two-stage status to message
if self.two_stage_processor is not None:
message += "\n✅ Two-stage processor ready with AI models"
else:
message += "\n⚠️ Two-stage processor not available"
logger.info(message)
return message
except AttributeError as e:
self.models_loaded = False
error_msg = f"Model loading failed - method not found: {str(e)}"
logger.error(error_msg)
return error_msg
except ModelLoadingError as e:
self.models_loaded = False
error_msg = f"Model loading failed: {str(e)}"
logger.error(error_msg)
return error_msg
except Exception as e:
self.models_loaded = False
error_msg = f"Unexpected error during model loading: {str(e)}"
logger.error(error_msg)
return error_msg
def process_video(
self,
video_path: str,
background_choice: str,
custom_background_path: Optional[str] = None,
progress_callback: Optional[Callable] = None,
use_two_stage: bool = False,
chroma_preset: str = "standard",
preview_mask: bool = False,
preview_greenscreen: bool = False
) -> Tuple[Optional[str], str]:
"""Process video with the specified parameters"""
if not self.models_loaded or not self.core_processor:
return None, "Models not loaded. Please load models first."
if self.cancel_event.is_set():
return None, "Processing cancelled"
# Initialize progress tracker with video frame count
self._initialize_progress_tracker(video_path, progress_callback)
# Validate input file
is_valid, validation_msg = validate_video_file(video_path)
if not is_valid:
return None, f"Invalid video: {validation_msg}"
try:
# Route to appropriate processing method
if use_two_stage:
if not TWO_STAGE_AVAILABLE:
return None, "Two-stage processing not available - module not found"
if self.two_stage_processor is None:
return None, "Two-stage processor not initialized - models may not be loaded properly"
logger.info("Using two-stage processing pipeline with AI models")
return self._process_two_stage(
video_path, background_choice, custom_background_path,
progress_callback, chroma_preset
)
else:
logger.info("Using single-stage processing pipeline")
return self._process_single_stage(
video_path, background_choice, custom_background_path,
progress_callback, preview_mask, preview_greenscreen
)
except VideoProcessingError as e:
logger.error(f"Video processing failed: {e}")
return None, f"Processing failed: {str(e)}"
except Exception as e:
logger.error(f"Unexpected error during video processing: {e}")
return None, f"Unexpected error: {str(e)}"
def _process_single_stage(
self,
video_path: str,
background_choice: str,
custom_background_path: Optional[str],
progress_callback: Optional[Callable],
preview_mask: bool,
preview_greenscreen: bool
) -> Tuple[Optional[str], str]:
"""Process video using single-stage pipeline"""
# Generate output path
import time
timestamp = int(time.time())
output_dir = Path(self.config.output_dir) / "single_stage"
output_dir.mkdir(parents=True, exist_ok=True)
output_path = str(output_dir / f"processed_{timestamp}.mp4")
# Process video using core processor
result = self.core_processor.process_video(
input_path=video_path,
output_path=output_path,
bg_config={'background_choice': background_choice, 'custom_path': custom_background_path}
)
if not result:
return None, "Video processing failed"
# Add audio if not in preview mode
if not (preview_mask or preview_greenscreen):
final_video_path = self.audio_processor.add_audio_to_video(
original_video=video_path,
processed_video=output_path
)
else:
final_video_path = output_path
success_msg = (
f"Processing completed successfully!\n"
f"Frames processed: {result.get('frames', 'unknown')}\n"
f"Background: {background_choice}\n"
f"Mode: Single-stage\n"
f"Device: {self.device_manager.get_optimal_device()}"
)
return final_video_path, success_msg
def _process_two_stage(
self,
video_path: str,
background_choice: str,
custom_background_path: Optional[str],
progress_callback: Optional[Callable],
chroma_preset: str
) -> Tuple[Optional[str], str]:
"""Process video using two-stage pipeline"""
if self.two_stage_processor is None:
return None, "Two-stage processor not available"
# Get video dimensions for background preparation
import cv2
cap = cv2.VideoCapture(video_path)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
# Prepare background using core processor
background = self.core_processor.prepare_background(
background_choice, custom_background_path, frame_width, frame_height
)
if background is None:
return None, "Failed to prepare background"
# Process with two-stage pipeline
import time
timestamp = int(time.time())
output_dir = Path(self.config.output_dir) / "two_stage"
output_dir.mkdir(parents=True, exist_ok=True)
final_output = str(output_dir / f"final_{timestamp}.mp4")
chroma_settings = CHROMA_PRESETS.get(chroma_preset, CHROMA_PRESETS['standard'])
logger.info(f"Starting two-stage processing with chroma preset: {chroma_preset}")
result, message = self.two_stage_processor.process_full_pipeline(
video_path,
background,
final_output,
chroma_settings=chroma_settings,
progress_callback=progress_callback
)
if result is None:
return None, message
success_msg = (
f"Two-stage processing completed!\n"
f"Background: {background_choice}\n"
f"Chroma Preset: {chroma_preset}\n"
f"Quality: Cinema-grade with AI models\n"
f"Device: {self.device_manager.get_optimal_device()}"
)
return result, success_msg
def get_status(self) -> Dict[str, Any]:
"""Get comprehensive status of all components"""
base_status = {
'models_loaded': self.models_loaded,
'two_stage_available': TWO_STAGE_AVAILABLE and self.two_stage_processor is not None,
'device': str(self.device_manager.get_optimal_device()),
'memory_usage': self.memory_manager.get_memory_usage(),
'config': self.config.to_dict()
}
# Add model-specific status if available
if self.model_loader:
base_status['model_loader_available'] = True
try:
base_status['sam2_loaded'] = self.model_loader.get_sam2() is not None
base_status['matanyone_loaded'] = self.model_loader.get_matanyone() is not None
except AttributeError:
base_status['sam2_loaded'] = False
base_status['matanyone_loaded'] = False
# Add processing status if available
if self.core_processor:
base_status['core_processor_loaded'] = True
# Add two-stage processor status
if self.two_stage_processor:
base_status['two_stage_processor_ready'] = True
else:
base_status['two_stage_processor_ready'] = False
# Add progress tracking if available
if self.progress_tracker:
base_status['progress'] = self.progress_tracker.get_all_progress()
return base_status
def cancel_processing(self):
"""Cancel any ongoing processing"""
self.cancel_event.set()
logger.info("Processing cancellation requested")
def cleanup_resources(self):
"""Clean up all resources"""
self.memory_manager.cleanup_aggressive()
if self.model_loader:
self.model_loader.cleanup()
logger.info("Resources cleaned up")
# Global processor instance for application
processor = VideoProcessor()
# Backward compatibility functions for existing UI
def load_models_with_validation(progress_callback: Optional[Callable] = None) -> str:
"""Load models with validation - backward compatibility wrapper"""
return processor.load_models(progress_callback)
def process_video_fixed(
video_path: str,
background_choice: str,
custom_background_path: Optional[str],
progress_callback: Optional[Callable] = None,
use_two_stage: bool = False,
chroma_preset: str = "standard",
preview_mask: bool = False,
preview_greenscreen: bool = False
) -> Tuple[Optional[str], str]:
"""Process video - backward compatibility wrapper"""
return processor.process_video(
video_path, background_choice, custom_background_path,
progress_callback, use_two_stage, chroma_preset,
preview_mask, preview_greenscreen
)
def get_model_status() -> Dict[str, Any]:
"""Get model status - backward compatibility wrapper"""
return processor.get_status()
def get_cache_status() -> Dict[str, Any]:
"""Get cache status - backward compatibility wrapper"""
return processor.get_status()
# For backward compatibility
PROCESS_CANCELLED = processor.cancel_event
def main():
"""Main application entry point"""
try:
logger.info("Starting Video Background Replacement application")
logger.info(f"Device: {processor.device_manager.get_optimal_device()}")
logger.info(f"Two-stage module available: {TWO_STAGE_AVAILABLE}")
logger.info("Modular architecture loaded successfully")
# Import and create UI
from ui_components import create_interface
demo = create_interface()
# Launch application (no share=True on Spaces)
demo.queue().launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
debug=False
)
except Exception as e:
logger.error(f"Application startup failed: {e}")
raise
finally:
# Cleanup on exit
processor.cleanup_resources()
if __name__ == "__main__":
main()
|