File size: 14,856 Bytes
d6467ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
"""
Device and Hardware Management Module
====================================

Handles device detection, CUDA compatibility, memory management,
and threading configuration for BackgroundFX Pro.

Fixes:
- CUDA multiprocessor_count compatibility error
- OpenMP threading issues (OMP_NUM_THREADS)
- GPU memory optimization
- Automatic device selection

Author: BackgroundFX Pro Team
License: MIT
"""

import os
import logging
import warnings
from typing import Dict, Optional, List, Tuple
import platform
import psutil

# Fix threading issues immediately at module import
os.environ.setdefault('OMP_NUM_THREADS', '4')
os.environ.setdefault('MKL_NUM_THREADS', '4')
os.environ.setdefault('NUMEXPR_NUM_THREADS', '4')

try:
    import torch
    TORCH_AVAILABLE = True
except ImportError:
    TORCH_AVAILABLE = False
    warnings.warn("PyTorch not available - using CPU-only processing")

try:
    import cv2
    OPENCV_AVAILABLE = True
except ImportError:
    OPENCV_AVAILABLE = False
    warnings.warn("OpenCV not available")

logger = logging.getLogger(__name__)

class DeviceManager:
    """Manages device detection, selection and optimization"""
    
    def __init__(self):
        self.device = None
        self.device_info = {}
        self.cuda_available = False
        self.gpu_count = 0
        self.memory_info = {}
        self.threading_configured = False
        
    def initialize(self) -> bool:
        """Initialize device manager and configure optimal settings"""
        try:
            logger.info("πŸ”§ Initializing Device Manager...")
            
            # Fix threading first
            self._configure_threading()
            
            # Detect available devices
            self._detect_devices()
            
            # Configure CUDA if available
            if self.cuda_available:
                self._configure_cuda()
            
            # Select optimal device
            self.device = self._select_optimal_device()
            
            # Log system information
            self._log_system_info()
            
            logger.info(f"βœ… Device Manager initialized - Using: {self.device}")
            return True
            
        except Exception as e:
            logger.error(f"❌ Device Manager initialization failed: {e}")
            self.device = 'cpu'
            return False
    
    def _configure_threading(self):
        """Configure threading for optimal performance"""
        try:
            # Set OpenMP threads
            if 'OMP_NUM_THREADS' not in os.environ:
                os.environ['OMP_NUM_THREADS'] = '4'
            
            # Set MKL threads  
            if 'MKL_NUM_THREADS' not in os.environ:
                os.environ['MKL_NUM_THREADS'] = '4'
            
            # Set NumExpr threads
            if 'NUMEXPR_NUM_THREADS' not in os.environ:
                os.environ['NUMEXPR_NUM_THREADS'] = '4'
            
            # Configure PyTorch threads
            if TORCH_AVAILABLE:
                torch.set_num_threads(4)
                torch.set_num_interop_threads(4)
            
            # Configure OpenCV threads
            if OPENCV_AVAILABLE:
                cv2.setNumThreads(4)
            
            self.threading_configured = True
            logger.info(f"βœ… Threading configured: OMP={os.environ.get('OMP_NUM_THREADS')}")
            
        except Exception as e:
            logger.warning(f"⚠️ Threading configuration warning: {e}")
    
    def _detect_devices(self):
        """Detect available computing devices"""
        try:
            if not TORCH_AVAILABLE:
                self.cuda_available = False
                self.gpu_count = 0
                return
            
            # Check CUDA availability
            self.cuda_available = torch.cuda.is_available()
            self.gpu_count = torch.cuda.device_count() if self.cuda_available else 0
            
            if self.cuda_available:
                logger.info(f"βœ… CUDA available: {self.gpu_count} GPU(s)")
                
                # Get device properties for each GPU
                for i in range(self.gpu_count):
                    try:
                        props = self._get_cuda_properties_safe(i)
                        self.device_info[f'cuda:{i}'] = props
                        logger.info(f"   GPU {i}: {props['name']} ({props['memory_gb']:.1f} GB)")
                    except Exception as e:
                        logger.warning(f"   GPU {i}: Properties unavailable ({e})")
            else:
                logger.info("ℹ️ CUDA not available - using CPU")
                
        except Exception as e:
            logger.error(f"❌ Device detection failed: {e}")
            self.cuda_available = False
            self.gpu_count = 0
    
    def _get_cuda_properties_safe(self, device_id: int) -> Dict:
        """Safely get CUDA device properties with compatibility handling"""
        try:
            if not TORCH_AVAILABLE or not torch.cuda.is_available():
                return {}
            
            props = torch.cuda.get_device_properties(device_id)
            
            # Handle different PyTorch versions for multiprocessor count
            if hasattr(props, 'multi_processor_count'):
                sm_count = props.multi_processor_count
            elif hasattr(props, 'multiprocessor_count'):
                sm_count = props.multiprocessor_count
            else:
                # Fallback calculation for older PyTorch versions
                try:
                    major, minor = torch.cuda.get_device_capability(device_id)
                    # Rough estimation based on compute capability
                    sm_count = major * 8 if major >= 6 else major * 4
                except:
                    sm_count = 'Unknown'
            
            device_props = {
                'name': props.name,
                'memory_gb': props.total_memory / (1024**3),
                'memory_bytes': props.total_memory,
                'multiprocessor_count': sm_count,
                'major': props.major,
                'minor': props.minor,
                'compute_capability': f"{props.major}.{props.minor}"
            }
            
            return device_props
            
        except Exception as e:
            logger.error(f"❌ Error getting CUDA properties for device {device_id}: {e}")
            return {
                'name': 'Unknown GPU',
                'memory_gb': 0.0,
                'memory_bytes': 0,
                'multiprocessor_count': 'Unknown',
                'error': str(e)
            }
    
    def _configure_cuda(self):
        """Configure CUDA for optimal performance"""
        try:
            if not self.cuda_available or not TORCH_AVAILABLE:
                return
            
            # Enable TensorRT optimization if available
            torch.backends.cudnn.benchmark = True
            torch.backends.cudnn.deterministic = False
            
            # Set memory management
            torch.cuda.empty_cache()
            
            # Enable mixed precision if supported
            try:
                # Check if Automatic Mixed Precision is available
                from torch.cuda.amp import autocast
                logger.info("βœ… Mixed precision available")
            except ImportError:
                logger.info("ℹ️ Mixed precision not available")
            
            logger.info("βœ… CUDA optimization configured")
            
        except Exception as e:
            logger.warning(f"⚠️ CUDA configuration warning: {e}")
    
    def _select_optimal_device(self) -> str:
        """Select the optimal device for processing"""
        try:
            if not TORCH_AVAILABLE:
                return 'cpu'
            
            if not self.cuda_available or self.gpu_count == 0:
                return 'cpu'
            
            # Select GPU with most memory
            best_device = 'cuda:0'
            best_memory = 0
            
            for device_name, props in self.device_info.items():
                if device_name.startswith('cuda:'):
                    memory = props.get('memory_gb', 0)
                    if memory > best_memory:
                        best_memory = memory
                        best_device = device_name
            
            # Minimum memory check
            if best_memory < 2.0:  # Require at least 2GB
                logger.warning(f"⚠️ GPU memory ({best_memory:.1f}GB) may be insufficient, using CPU")
                return 'cpu'
            
            return best_device
            
        except Exception as e:
            logger.error(f"❌ Device selection failed: {e}")
            return 'cpu'
    
    def _log_system_info(self):
        """Log comprehensive system information"""
        try:
            # System information
            logger.info(f"πŸ“Š System: {platform.system()} {platform.release()}")
            logger.info(f"πŸ’Ύ CPU: {platform.processor()}")
            logger.info(f"🧠 RAM: {psutil.virtual_memory().total / (1024**3):.1f} GB")
            
            # Python and package versions
            logger.info(f"🐍 Python: {platform.python_version()}")
            
            if TORCH_AVAILABLE:
                logger.info(f"πŸ”₯ PyTorch: {torch.__version__}")
                if torch.cuda.is_available():
                    logger.info(f"⚑ CUDA: {torch.version.cuda}")
            
            if OPENCV_AVAILABLE:
                logger.info(f"πŸ“· OpenCV: {cv2.__version__}")
            
        except Exception as e:
            logger.warning(f"⚠️ System info logging failed: {e}")
    
    def get_device(self) -> str:
        """Get the selected device"""
        return self.device or 'cpu'
    
    def get_device_info(self) -> Dict:
        """Get device information"""
        return {
            'device': self.device,
            'cuda_available': self.cuda_available,
            'gpu_count': self.gpu_count,
            'device_info': self.device_info,
            'threading_configured': self.threading_configured
        }
    
    def get_memory_usage(self) -> Dict:
        """Get current memory usage"""
        memory_info = {
            'system_memory_gb': psutil.virtual_memory().total / (1024**3),
            'system_memory_used_gb': psutil.virtual_memory().used / (1024**3),
            'system_memory_percent': psutil.virtual_memory().percent
        }
        
        if self.cuda_available and TORCH_AVAILABLE:
            try:
                for i in range(self.gpu_count):
                    allocated = torch.cuda.memory_allocated(i) / (1024**3)
                    reserved = torch.cuda.memory_reserved(i) / (1024**3)
                    total = self.device_info.get(f'cuda:{i}', {}).get('memory_gb', 0)
                    
                    memory_info[f'gpu_{i}_allocated_gb'] = allocated
                    memory_info[f'gpu_{i}_reserved_gb'] = reserved
                    memory_info[f'gpu_{i}_total_gb'] = total
                    memory_info[f'gpu_{i}_percent'] = (allocated / max(total, 1)) * 100
                    
            except Exception as e:
                logger.warning(f"⚠️ GPU memory info failed: {e}")
        
        return memory_info
    
    def optimize_for_model(self, model_name: str) -> Dict:
        """Optimize device settings for specific model"""
        optimizations = {
            'device': self.device,
            'mixed_precision': False,
            'gradient_checkpointing': False,
            'batch_size': 1
        }
        
        try:
            # Model-specific optimizations
            if model_name.lower() == 'sam2':
                if self.cuda_available and self._get_gpu_memory_gb() >= 8:
                    optimizations.update({
                        'mixed_precision': True,
                        'batch_size': 2
                    })
            
            elif model_name.lower() == 'matanyone':
                if self.cuda_available and self._get_gpu_memory_gb() >= 6:
                    optimizations.update({
                        'mixed_precision': True
                    })
            
            logger.info(f"βš™οΈ Optimizations for {model_name}: {optimizations}")
            
        except Exception as e:
            logger.warning(f"⚠️ Model optimization failed: {e}")
        
        return optimizations
    
    def _get_gpu_memory_gb(self) -> float:
        """Get GPU memory in GB"""
        if not self.cuda_available or not self.device_info:
            return 0.0
        
        device_key = self.device if self.device in self.device_info else 'cuda:0'
        return self.device_info.get(device_key, {}).get('memory_gb', 0.0)
    
    def cleanup(self):
        """Cleanup device resources"""
        try:
            if self.cuda_available and TORCH_AVAILABLE:
                torch.cuda.empty_cache()
                logger.info("βœ… GPU cache cleared")
        except Exception as e:
            logger.warning(f"⚠️ Cleanup warning: {e}")

# Global device manager instance
_device_manager = None

def get_device_manager() -> DeviceManager:
    """Get the global device manager instance"""
    global _device_manager
    if _device_manager is None:
        _device_manager = DeviceManager()
        _device_manager.initialize()
    return _device_manager

def get_optimal_device() -> str:
    """Get the optimal device for processing"""
    return get_device_manager().get_device()

def fix_cuda_compatibility():
    """Fix CUDA compatibility issues"""
    try:
        dm = get_device_manager()
        logger.info("βœ… CUDA compatibility checked and fixed")
        return dm.get_device_info()
    except Exception as e:
        logger.error(f"❌ CUDA compatibility fix failed: {e}")
        return {'device': 'cpu', 'error': str(e)}

def setup_optimal_threading():
    """Setup optimal threading configuration"""
    try:
        dm = get_device_manager()
        if dm.threading_configured:
            logger.info("βœ… Threading already configured optimally")
        else:
            dm._configure_threading()
        return True
    except Exception as e:
        logger.error(f"❌ Threading setup failed: {e}")
        return False

def get_system_diagnostics() -> Dict:
    """Get comprehensive system diagnostics"""
    dm = get_device_manager()
    return {
        'device_info': dm.get_device_info(),
        'memory_usage': dm.get_memory_usage(),
        'system_ready': dm.device is not None
    }

# Initialize on module import
try:
    _device_manager = DeviceManager()
    _device_manager.initialize()
    logger.info("βœ… Device manager initialized on import")
except Exception as e:
    logger.warning(f"⚠️ Device manager initialization warning: {e}")