MogensR's picture
Update core/models.py
d51bd78
raw
history blame
19.2 kB
#!/usr/bin/env python3
"""
Model management and optimization for BackgroundFX Pro.
Fixes MatAnyone quality issues and manages model loading.
"""
from dataclasses import dataclass
from enum import Enum
from functools import lru_cache
from pathlib import Path
from typing import Dict, Any, Optional, Tuple, List
import gc
import logging
import warnings
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
logger = logging.getLogger(__name__)
# -------------------------------
# Configuration & Caching
# -------------------------------
@dataclass
class ModelConfig:
"""Configuration for model management."""
sam2_checkpoint: str = "checkpoints/sam2_hiera_large.pt"
sam2_config: str = "configs/sam2_hiera_l.yaml" # path to SAM2 config file
matanyone_checkpoint: str = "checkpoints/matanyone_v2.pth"
device: str = "cuda"
dtype: torch.dtype = torch.float16
optimize_memory: bool = True
use_amp: bool = True
cache_size: int = 5
enable_quality_fixes: bool = True
matanyone_enhancement: bool = True
use_tensorrt: bool = False
batch_size: int = 1
class ModelCache:
"""Intelligent model caching system."""
def __init__(self, max_size: int = 5):
self.cache: Dict[str, Any] = {}
self.max_size = max_size
self.access_count: Dict[str, int] = {}
self.memory_usage: Dict[str, float] = {}
def add(self, key: str, model: Any, memory_size: float):
"""Add model to cache with memory tracking."""
if len(self.cache) >= self.max_size and self.access_count:
lru_key = min(self.access_count, key=self.access_count.get)
self.remove(lru_key)
self.cache[key] = model
self.access_count[key] = 0
self.memory_usage[key] = memory_size
def get(self, key: str) -> Optional[Any]:
"""Get model from cache."""
if key in self.cache:
self.access_count[key] += 1
return self.cache[key]
return None
def remove(self, key: str):
"""Remove model from cache and free memory."""
if key in self.cache:
model = self.cache[key]
del self.cache[key]
self.access_count.pop(key, None)
self.memory_usage.pop(key, None)
# Force cleanup
try:
del model
except Exception:
pass
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def clear(self):
"""Clear entire cache."""
for key in list(self.cache.keys()):
self.remove(key)
# -------------------------------
# MatAnyone model (enhanced)
# -------------------------------
class MatAnyoneModel(nn.Module):
"""Enhanced MatAnyone model with quality fixes."""
def __init__(self, config: ModelConfig):
super().__init__()
self.config = config
self.base_model: Optional[nn.Module] = None
self.quality_enhancer = QualityEnhancer() if config.enable_quality_fixes else None
self.loaded = False
def load(self):
"""Load MatAnyone model with optimizations."""
if self.loaded:
return
try:
checkpoint_path = Path(self.config.matanyone_checkpoint)
if not checkpoint_path.exists():
logger.warning(f"MatAnyone checkpoint not found at {checkpoint_path}")
return
# Load weights
state_dict = torch.load(checkpoint_path, map_location=self.config.device)
# Build model (placeholder architecture)
self.base_model = self._build_matanyone_architecture()
# Load filtered weights
self._load_weights_safe(state_dict)
# Optimize
if self.config.optimize_memory:
self._optimize_model()
self.loaded = True
logger.info("MatAnyone model loaded successfully")
except Exception as e:
logger.error(f"Failed to load MatAnyone model: {e}")
self.loaded = False
def _build_matanyone_architecture(self) -> nn.Module:
"""Build MatAnyone architecture (placeholder)."""
class MatAnyoneBase(nn.Module):
def __init__(self):
super().__init__()
self.encoder = nn.Sequential(
nn.Conv2d(4, 64, 3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 128, 3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(128, 256, 3, stride=2, padding=1),
nn.ReLU(),
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(64, 4, 3, padding=1),
nn.Sigmoid(),
)
def forward(self, x):
features = self.encoder(x)
output = self.decoder(features)
return output
model = MatAnyoneBase().to(self.config.device)
if self.config.dtype == torch.float16 and "cuda" in str(self.config.device).lower() and torch.cuda.is_available():
model = model.half()
return model
def _load_weights_safe(self, state_dict: Dict):
"""Safely load weights with compatibility handling."""
if self.base_model is None:
return
model_dict = self.base_model.state_dict()
compatible_dict = {}
for k, v in state_dict.items():
k_clean = k[7:] if k.startswith("module.") else k
if k_clean in model_dict and model_dict[k_clean].shape == v.shape:
compatible_dict[k_clean] = v
else:
logger.warning(f"Skipping incompatible weight: {k}")
model_dict.update(compatible_dict)
self.base_model.load_state_dict(model_dict, strict=False)
logger.info(f"Loaded {len(compatible_dict)}/{len(state_dict)} weights")
def _optimize_model(self):
"""Optimize model for inference."""
if self.base_model is None:
return
self.base_model.eval()
for p in self.base_model.parameters():
p.requires_grad = False
if self.config.use_tensorrt:
try:
self._optimize_with_tensorrt()
except Exception as e:
logger.warning(f"TensorRT optimization failed: {e}")
def _optimize_with_tensorrt(self):
"""Placeholder for optional TensorRT optimization."""
raise NotImplementedError("TensorRT path not implemented")
def forward(self, image: torch.Tensor, mask: torch.Tensor) -> Dict[str, torch.Tensor]:
"""Enhanced forward pass with quality fixes."""
if not self.loaded:
self.load()
if self.base_model is None:
return {"alpha": mask.unsqueeze(1), "foreground": image, "confidence": torch.tensor([0.0], device=image.device)}
# Concatenate image (3ch) + mask (1ch) => 4ch
x = torch.cat([image, mask.unsqueeze(1)], dim=1)
# Quality enhancements
if self.config.matanyone_enhancement:
x = self._preprocess_input(x)
amp_enabled = self.config.use_amp and torch.cuda.is_available() and "cuda" in str(self.config.device).lower()
with torch.cuda.amp.autocast(enabled=amp_enabled):
output = self.base_model(x)
alpha = output[:, 3:4, :, :]
foreground = output[:, :3, :, :]
if self.quality_enhancer:
alpha = self.quality_enhancer.enhance_alpha(alpha, mask)
foreground = self.quality_enhancer.enhance_foreground(foreground, image)
alpha = self._fix_matanyone_artifacts(alpha, mask)
return {
"alpha": alpha,
"foreground": foreground,
"confidence": self._compute_confidence(alpha, mask),
}
def _preprocess_input(self, x: torch.Tensor) -> torch.Tensor:
"""Preprocess input to improve MatAnyone quality."""
if x.shape[2] > 64:
x = self._bilateral_filter_torch(x)
x = torch.clamp(x, 0, 1)
# Enhance mask edges (last channel)
mask_channel = x[:, 3:4, :, :]
mask_enhanced = self._enhance_mask_edges(mask_channel)
x = torch.cat([x[:, :3, :, :], mask_enhanced], dim=1)
return x
def _fix_matanyone_artifacts(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
"""Fix common MatAnyone artifacts."""
alpha = self._fix_edge_bleeding(alpha, original_mask)
alpha = self._fix_transparency_issues(alpha)
alpha = self._ensure_mask_consistency(alpha, original_mask)
return alpha
def _fix_edge_bleeding(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
"""Fix edge bleeding artifacts."""
edges = self._detect_edges_torch(original_mask)
edge_mask = F.max_pool2d(edges, kernel_size=5, stride=1, padding=2)
alpha_refined = alpha.clone()
edge_region = edge_mask > 0.1
if edge_region.any():
alpha_refined[edge_region] = (
0.7 * alpha[edge_region] + 0.3 * original_mask.unsqueeze(1).expand_as(alpha)[edge_region]
)
return alpha_refined
def _fix_transparency_issues(self, alpha: torch.Tensor) -> torch.Tensor:
"""Fix transparency artifacts."""
mid_range = (alpha > 0.2) & (alpha < 0.8)
alpha_fixed = alpha.clone()
alpha_fixed[mid_range] = torch.where(
alpha[mid_range] > 0.5,
torch.clamp(alpha[mid_range] * 1.2, max=1.0),
torch.clamp(alpha[mid_range] * 0.8, min=0.0),
)
alpha_fixed = F.gaussian_blur(alpha_fixed, kernel_size=(3, 3))
return alpha_fixed
def _ensure_mask_consistency(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
"""Ensure consistency with original mask."""
if original_mask.dim() == 2:
original_mask = original_mask.unsqueeze(0).unsqueeze(0)
elif original_mask.dim() == 3:
original_mask = original_mask.unsqueeze(1)
alpha = torch.where(original_mask < 0.1, torch.zeros_like(alpha), alpha)
alpha = torch.where(original_mask > 0.9, torch.ones_like(alpha) * 0.95, alpha)
return alpha
def _compute_confidence(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
"""Compute confidence score for the output."""
if original_mask.dim() < alpha.dim():
original_mask = original_mask.unsqueeze(1).expand_as(alpha)
diff = torch.abs(alpha - original_mask)
confidence = 1.0 - torch.mean(diff, dim=(1, 2, 3))
return confidence
def _bilateral_filter_torch(self, x: torch.Tensor) -> torch.Tensor:
"""Approximate bilateral filter via Gaussian blur."""
return F.gaussian_blur(x, kernel_size=(5, 5))
def _enhance_mask_edges(self, mask: torch.Tensor) -> torch.Tensor:
"""Enhance edges in mask channel."""
edges = self._detect_edges_torch(mask)
enhanced = torch.clamp(mask + 0.3 * edges, 0, 1)
return enhanced
def _detect_edges_torch(self, x: torch.Tensor) -> torch.Tensor:
"""Detect edges using Sobel filters."""
sobel_x = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=x.dtype, device=x.device).view(1, 1, 3, 3)
sobel_y = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=x.dtype, device=x.device).view(1, 1, 3, 3)
edges_x = F.conv2d(x, sobel_x, padding=1)
edges_y = F.conv2d(x, sobel_y, padding=1)
edges = torch.sqrt(edges_x ** 2 + edges_y ** 2)
return edges
# -------------------------------
# SAM2 wrapper
# -------------------------------
class SAM2Model:
"""SAM2 model wrapper with optimizations."""
def __init__(self, config: ModelConfig):
self.config = config
self.model = None
self.predictor = None
self.loaded = False
def load(self):
"""Load SAM2 model."""
if self.loaded:
return
try:
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
self.model = build_sam2(
config_file=self.config.sam2_config,
ckpt_path=self.config.sam2_checkpoint,
device=self.config.device,
)
self.predictor = SAM2ImagePredictor(self.model)
self.loaded = True
logger.info("SAM2 model loaded successfully")
except Exception as e:
logger.error(f"Failed to load SAM2 model: {e}")
self.loaded = False
def predict(self, image: np.ndarray, prompts: Optional[Dict] = None) -> np.ndarray:
"""Generate segmentation mask."""
if not self.loaded:
self.load()
if self.predictor is None:
return np.zeros((image.shape[0], image.shape[1]), dtype=np.uint8)
self.predictor.set_image(image)
if prompts:
masks, scores, _ = self.predictor.predict(
point_coords=prompts.get("points"),
point_labels=prompts.get("labels"),
box=prompts.get("box"),
multimask_output=True,
)
mask = masks[int(np.argmax(scores))]
else:
# Fallback automatic segmentation (API may differ by version)
try:
masks = self.predictor.generate_auto_masks(image)
mask = masks[0] if len(masks) > 0 else np.zeros_like(image[:, :, 0])
except Exception:
# As a conservative fallback, return empty mask
mask = np.zeros_like(image[:, :, 0])
return mask
# -------------------------------
# Quality enhancer
# -------------------------------
class QualityEnhancer(nn.Module):
"""Neural quality enhancement module."""
def __init__(self):
super().__init__()
self.alpha_refiner = nn.Sequential(
nn.Conv2d(1, 16, 3, padding=1),
nn.ReLU(),
nn.Conv2d(16, 16, 3, padding=1),
nn.ReLU(),
nn.Conv2d(16, 1, 3, padding=1),
nn.Sigmoid(),
)
self.foreground_enhancer = nn.Sequential(
nn.Conv2d(3, 32, 3, padding=1),
nn.ReLU(),
nn.Conv2d(32, 32, 3, padding=1),
nn.ReLU(),
nn.Conv2d(32, 3, 3, padding=1),
nn.Tanh(),
)
def enhance_alpha(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
"""Enhance alpha channel quality."""
refined = self.alpha_refiner(alpha)
enhanced = torch.clamp(0.7 * refined + 0.3 * alpha, 0, 1)
return enhanced
def enhance_foreground(self, foreground: torch.Tensor, original_image: torch.Tensor) -> torch.Tensor:
"""Enhance foreground quality."""
residual = self.foreground_enhancer(foreground)
enhanced = torch.clamp(foreground + 0.1 * residual, -1, 1)
# If inputs are [0,1], clamp to [0,1]
if foreground.min() >= 0.0 and foreground.max() <= 1.0:
enhanced = torch.clamp(enhanced, 0.0, 1.0)
return enhanced
# -------------------------------
# Model Manager
# -------------------------------
class ModelManager:
"""Central model management system."""
def __init__(self, config: Optional[ModelConfig] = None):
self.config = config or ModelConfig()
self.cache = ModelCache(max_size=self.config.cache_size)
# Instantiate default models
self.sam2 = SAM2Model(self.config)
self.matanyone = MatAnyoneModel(self.config)
def load_all(self):
"""Load all models."""
logger.info("Loading all models...")
self.sam2.load()
self.matanyone.load()
logger.info("All models loaded")
def get_sam2(self) -> 'SAM2Model':
"""Get SAM2 model (lazy-loaded)."""
if not self.sam2.loaded:
self.sam2.load()
return self.sam2
def get_matanyone(self) -> 'MatAnyoneModel':
"""Get MatAnyone model (lazy-loaded)."""
if not self.matanyone.loaded:
self.matanyone.load()
return self.matanyone
def process_frame(self, image: np.ndarray, mask: Optional[np.ndarray] = None) -> Dict[str, Any]:
"""Process single frame through the pipeline."""
image_tensor = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float() / 255.0
image_tensor = image_tensor.to(self.config.device)
if mask is None:
mask = self.sam2.predict(image)
mask_tensor = torch.from_numpy(mask).float().to(self.config.device)
result = self.matanyone(image_tensor, mask_tensor)
output = {
"alpha": result["alpha"].squeeze().cpu().numpy(),
"foreground": (result["foreground"].squeeze().permute(1, 2, 0).cpu().numpy() * 255.0),
"confidence": result["confidence"].detach().cpu().numpy(),
}
return output
def cleanup(self):
"""Cleanup models and free memory."""
self.cache.clear()
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# -------------------------------
# ModelType / ModelFactory (compat)
# -------------------------------
class ModelType(Enum):
SAM2 = "sam2"
MATANYONE = "matanyone"
class ModelFactory:
"""
Lightweight factory that returns cached model instances by type.
Kept for backward compatibility with modules importing from core.models.
"""
def __init__(self, config: Optional[ModelConfig] = None):
self.config = config or ModelConfig()
self._instances: Dict[ModelType, Any] = {}
def get(self, model_type: 'ModelType | str'):
"""Return (and cache) a model instance for the given type."""
if isinstance(model_type, str):
try:
model_type = ModelType(model_type.lower())
except Exception:
raise ValueError(f"Unknown model type: {model_type}")
if model_type == ModelType.SAM2:
if model_type not in self._instances:
self._instances[model_type] = SAM2Model(self.config)
return self._instances[model_type]
if model_type == ModelType.MATANYONE:
if model_type not in self._instances:
self._instances[model_type] = MatAnyoneModel(self.config)
return self._instances[model_type]
raise ValueError(f"Unsupported model type: {model_type}")
# Alias for older code
create = get
# -------------------------------
# Exports
# -------------------------------
__all__ = [
"ModelManager",
"SAM2Model",
"MatAnyoneModel",
"ModelConfig",
"ModelCache",
"QualityEnhancer",
"ModelType",
"ModelFactory",
]