VideoBackgroundReplacer / video_processor.py
MogensR's picture
Update video_processor.py
94dcf70
raw
history blame
52.9 kB
"""
Core Video Processing Module - Enhanced with Temporal Consistency
VERSION: 2.0-temporal-enhanced
ROLLBACK: Set USE_TEMPORAL_ENHANCEMENT = False to revert to original behavior
"""
import os
import cv2
import numpy as np
import time
import logging
import threading
from typing import Optional, Tuple, Dict, Any, Callable, List
from pathlib import Path
# Import modular components
import app_config
import memory_manager
import progress_tracker
import exceptions
# Import utilities
from utilities import (
segment_person_hq,
refine_mask_hq,
replace_background_hq,
create_professional_background,
PROFESSIONAL_BACKGROUNDS,
validate_video_file
)
# ============================================================================
# VERSION CONTROL AND FEATURE FLAGS - EASY ROLLBACK
# ============================================================================
# ROLLBACK CONTROL: Set to False to use original functions
USE_TEMPORAL_ENHANCEMENT = True
USE_HAIR_DETECTION = True
USE_OPTICAL_FLOW_TRACKING = True
USE_ADAPTIVE_REFINEMENT = True
logger = logging.getLogger(__name__)
class CoreVideoProcessor:
"""
ENHANCED: Core video processing pipeline with temporal consistency and fine-detail handling
"""
def __init__(self, sam2_predictor: Any, matanyone_model: Any,
config: app_config.ProcessingConfig, memory_mgr: memory_manager.MemoryManager):
self.sam2_predictor = sam2_predictor
self.matanyone_model = matanyone_model
self.config = config
self.memory_manager = memory_mgr
# Processing state
self.processing_active = False
self.last_refined_mask = None
self.frame_cache = {}
# ENHANCED: Temporal consistency state
self.mask_history = [] # Store recent masks for temporal smoothing
self.optical_flow_data = None # Previous frame for optical flow
self.hair_regions_cache = {} # Cache detected hair regions
self.quality_scores_history = [] # Track quality over time
# Statistics
self.stats = {
'videos_processed': 0,
'total_frames_processed': 0,
'total_processing_time': 0.0,
'average_fps': 0.0,
'failed_frames': 0,
'successful_frames': 0,
'cache_hits': 0,
'segmentation_errors': 0,
'refinement_errors': 0,
'temporal_corrections': 0, # NEW: Track temporal fixes
'hair_detections': 0, # NEW: Track hair detection success
'flow_tracking_failures': 0 # NEW: Track optical flow issues
}
# Quality settings based on config
self.quality_settings = config.get_quality_settings()
logger.info("CoreVideoProcessor initialized")
logger.info(f"Quality preset: {config.quality_preset}")
logger.info(f"Quality settings: {self.quality_settings}")
if USE_TEMPORAL_ENHANCEMENT:
logger.info("ENHANCED: Temporal consistency enabled")
if USE_HAIR_DETECTION:
logger.info("ENHANCED: Hair detection enabled")
def process_video(
self,
video_path: str,
background_choice: str,
custom_background_path: Optional[str] = None,
progress_callback: Optional[Callable] = None,
cancel_event: Optional[threading.Event] = None,
preview_mask: bool = False,
preview_greenscreen: bool = False
) -> Tuple[Optional[str], str]:
"""
ENHANCED: Process video with temporal consistency and fine-detail handling
"""
if self.processing_active:
return None, "Processing already in progress"
self.processing_active = True
start_time = time.time()
# ENHANCED: Reset temporal state for new video
self._reset_temporal_state()
try:
# Validate input video
is_valid, validation_msg = validate_video_file(video_path)
if not is_valid:
return None, f"Invalid video file: {validation_msg}"
# Open video file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return None, "Could not open video file"
# Get video properties
video_info = self._get_video_info(cap)
logger.info(f"Processing video: {video_info}")
# Check memory requirements
memory_check = self.memory_manager.can_process_video(
video_info['width'], video_info['height']
)
if not memory_check['can_process']:
cap.release()
return None, f"Insufficient memory: {memory_check['recommendations']}"
# Prepare background
background = self.prepare_background(
background_choice, custom_background_path,
video_info['width'], video_info['height']
)
if background is None:
cap.release()
return None, "Failed to prepare background"
# Setup output video
output_path = self._setup_output_video(video_info, preview_mask, preview_greenscreen)
out = self._create_video_writer(output_path, video_info)
if out is None:
cap.release()
return None, "Could not create output video writer"
# ENHANCED: Process video frames with temporal consistency
result = self._process_video_frames_enhanced(
cap, out, background, video_info,
progress_callback, cancel_event,
preview_mask, preview_greenscreen
)
# Cleanup
cap.release()
out.release()
if result['success']:
# Update statistics
processing_time = time.time() - start_time
self._update_processing_stats(video_info, processing_time, result)
success_msg = (
f"Processing completed successfully!\n"
f"Processed: {result['successful_frames']}/{result['total_frames']} frames\n"
f"Time: {processing_time:.1f}s\n"
f"Average FPS: {result['total_frames'] / processing_time:.1f}\n"
f"Temporal corrections: {self.stats['temporal_corrections']}\n"
f"Hair detections: {self.stats['hair_detections']}\n"
f"Background: {background_choice}"
)
return output_path, success_msg
else:
# Clean up failed output
try:
os.remove(output_path)
except:
pass
return None, result['error_message']
except Exception as e:
logger.error(f"Video processing failed: {e}")
return None, f"Processing failed: {str(e)}"
finally:
self.processing_active = False
def _reset_temporal_state(self):
"""ENHANCED: Reset temporal consistency state"""
self.mask_history.clear()
self.optical_flow_data = None
self.hair_regions_cache.clear()
self.quality_scores_history.clear()
self.last_refined_mask = None
self.stats['temporal_corrections'] = 0
self.stats['hair_detections'] = 0
self.stats['flow_tracking_failures'] = 0
def _get_video_info(self, cap: cv2.VideoCapture) -> Dict[str, Any]:
"""Extract comprehensive video information"""
return {
'fps': cap.get(cv2.CAP_PROP_FPS),
'total_frames': int(cap.get(cv2.CAP_PROP_FRAME_COUNT)),
'width': int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
'height': int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
'duration': cap.get(cv2.CAP_PROP_FRAME_COUNT) / cap.get(cv2.CAP_PROP_FPS),
'codec': int(cap.get(cv2.CAP_PROP_FOURCC))
}
def _setup_output_video(self, video_info: Dict[str, Any],
preview_mask: bool, preview_greenscreen: bool) -> str:
"""Setup output video path"""
timestamp = int(time.time())
if preview_mask:
filename = f"mask_preview_{timestamp}.mp4"
elif preview_greenscreen:
filename = f"greenscreen_preview_{timestamp}.mp4"
else:
filename = f"processed_video_{timestamp}.mp4"
return os.path.join(self.config.temp_dir, filename)
def _create_video_writer(self, output_path: str,
video_info: Dict[str, Any]) -> Optional[cv2.VideoWriter]:
"""Create video writer with optimal settings"""
try:
# Choose codec based on quality settings
if self.config.output_quality == 'high':
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
else:
fourcc = cv2.VideoWriter_fourcc(*'XVID')
writer = cv2.VideoWriter(
output_path,
fourcc,
video_info['fps'],
(video_info['width'], video_info['height'])
)
if not writer.isOpened():
logger.error("Failed to open video writer")
return None
return writer
except Exception as e:
logger.error(f"Error creating video writer: {e}")
return None
def _process_video_frames_enhanced(
self,
cap: cv2.VideoCapture,
out: cv2.VideoWriter,
background: np.ndarray,
video_info: Dict[str, Any],
progress_callback: Optional[Callable],
cancel_event: Optional[threading.Event],
preview_mask: bool,
preview_greenscreen: bool
) -> Dict[str, Any]:
"""ENHANCED: Process all video frames with temporal consistency"""
# Initialize progress tracking
prog_tracker = progress_tracker.ProgressTracker(
total_frames=video_info['total_frames'],
callback=progress_callback,
track_performance=True
)
frame_count = 0
successful_frames = 0
failed_frames = 0
# Reset enhanced state
self._reset_temporal_state()
try:
prog_tracker.set_stage("Processing frames with temporal enhancement")
while True:
# Check for cancellation
if cancel_event and cancel_event.is_set():
return {
'success': False,
'error_message': 'Processing cancelled by user',
'total_frames': frame_count,
'successful_frames': successful_frames,
'failed_frames': failed_frames
}
# Read frame
ret, frame = cap.read()
if not ret:
break
try:
# Update progress
prog_tracker.update(frame_count, "Processing frame with temporal consistency")
# ENHANCED: Process frame with temporal consistency
if USE_TEMPORAL_ENHANCEMENT:
processed_frame = self._process_single_frame_enhanced(
frame, background, frame_count,
preview_mask, preview_greenscreen
)
else:
processed_frame = self._process_single_frame_original(
frame, background, frame_count,
preview_mask, preview_greenscreen
)
# Write processed frame
out.write(processed_frame)
successful_frames += 1
# Memory management
if frame_count % self.config.memory_cleanup_interval == 0:
self.memory_manager.auto_cleanup_if_needed()
except Exception as frame_error:
logger.warning(f"Frame {frame_count} processing failed: {frame_error}")
# Write original frame as fallback
out.write(frame)
failed_frames += 1
self.stats['failed_frames'] += 1
frame_count += 1
# Skip frames if configured (for performance)
if self.config.frame_skip > 1:
for _ in range(self.config.frame_skip - 1):
ret, _ = cap.read()
if not ret:
break
frame_count += 1
# Finalize progress tracking
final_stats = prog_tracker.finalize()
return {
'success': successful_frames > 0,
'error_message': f'No frames processed successfully' if successful_frames == 0 else '',
'total_frames': frame_count,
'successful_frames': successful_frames,
'failed_frames': failed_frames,
'processing_stats': final_stats
}
except Exception as e:
logger.error(f"Frame processing loop failed: {e}")
return {
'success': False,
'error_message': f'Frame processing failed: {str(e)}',
'total_frames': frame_count,
'successful_frames': successful_frames,
'failed_frames': failed_frames
}
def _process_single_frame_enhanced(
self,
frame: np.ndarray,
background: np.ndarray,
frame_number: int,
preview_mask: bool,
preview_greenscreen: bool
) -> np.ndarray:
"""ENHANCED: Process a single video frame with temporal consistency"""
try:
# Person segmentation
mask = self._segment_person_enhanced(frame, frame_number)
# ENHANCED: Detect hair and fine details
if USE_HAIR_DETECTION:
hair_regions = self._detect_hair_regions(frame, mask, frame_number)
else:
hair_regions = None
# ENHANCED: Apply temporal consistency
if USE_TEMPORAL_ENHANCEMENT and len(self.mask_history) > 0:
mask = self._apply_temporal_consistency_enhanced(frame, mask, frame_number)
# ENHANCED: Adaptive mask refinement based on frame content
if USE_ADAPTIVE_REFINEMENT:
refined_mask = self._adaptive_mask_refinement(frame, mask, frame_number, hair_regions)
else:
refined_mask = self._refine_mask_original(frame, mask, frame_number)
# Store mask in history for temporal consistency
self._update_mask_history(refined_mask)
# Generate output based on mode
if preview_mask:
return self._create_mask_preview_enhanced(frame, refined_mask, hair_regions)
elif preview_greenscreen:
return self._create_greenscreen_preview(frame, refined_mask)
else:
return self._replace_background_enhanced(frame, refined_mask, background, hair_regions)
except Exception as e:
logger.warning(f"Enhanced single frame processing failed: {e}")
# Fallback to original processing
return self._process_single_frame_original(frame, background, frame_number, preview_mask, preview_greenscreen)
def _detect_hair_regions(self, frame: np.ndarray, mask: np.ndarray, frame_number: int) -> Optional[np.ndarray]:
"""ENHANCED: Detect hair and fine detail regions automatically"""
try:
# Check cache first
if frame_number in self.hair_regions_cache:
self.stats['cache_hits'] += 1
return self.hair_regions_cache[frame_number]
# Convert frame to different color spaces for better hair detection
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Method 1: Texture-based hair detection
# Hair typically has high frequency texture
laplacian = cv2.Laplacian(gray, cv2.CV_64F)
texture_strength = np.abs(laplacian)
# Method 2: Color-based hair detection
# Hair is typically in darker hue ranges
hair_hue_mask = ((hsv[:,:,0] >= 0) & (hsv[:,:,0] <= 30)) | \
((hsv[:,:,0] >= 150) & (hsv[:,:,0] <= 180))
hair_value_mask = hsv[:,:,2] < 100 # Darker regions
# Combine texture and color information
hair_probability = np.zeros_like(gray, dtype=np.float32)
# High texture regions
texture_norm = (texture_strength - texture_strength.min()) / (texture_strength.max() - texture_strength.min() + 1e-8)
hair_probability += texture_norm * 0.6
# Color-based probability
color_prob = (hair_hue_mask.astype(np.float32) * hair_value_mask.astype(np.float32))
hair_probability += color_prob * 0.4
# Only consider regions near the mask boundary (where hair typically is)
mask_boundary = self._get_mask_boundary_region(mask, boundary_width=20)
hair_probability *= mask_boundary
# Threshold to get hair regions
hair_threshold = np.percentile(hair_probability[hair_probability > 0], 75)
hair_regions = (hair_probability > hair_threshold).astype(np.uint8)
# Clean up hair regions
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
hair_regions = cv2.morphologyEx(hair_regions, cv2.MORPH_CLOSE, kernel)
# Cache the result
self.hair_regions_cache[frame_number] = hair_regions
# Update stats if hair was detected
if np.any(hair_regions):
self.stats['hair_detections'] += 1
logger.debug(f"Hair regions detected in frame {frame_number}")
return hair_regions
except Exception as e:
logger.warning(f"Hair detection failed for frame {frame_number}: {e}")
return None
def _get_mask_boundary_region(self, mask: np.ndarray, boundary_width: int = 20) -> np.ndarray:
"""Get region around mask boundary where hair/fine details are likely"""
try:
# Create dilated and eroded versions of mask
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (boundary_width, boundary_width))
dilated = cv2.dilate(mask, kernel, iterations=1)
eroded = cv2.erode(mask, kernel, iterations=1)
# Boundary region is dilated minus eroded
boundary_region = ((dilated > 0) & (eroded == 0)).astype(np.float32)
return boundary_region
except Exception as e:
logger.warning(f"Boundary region detection failed: {e}")
return np.ones_like(mask, dtype=np.float32)
def _apply_temporal_consistency_enhanced(self, frame: np.ndarray, current_mask: np.ndarray, frame_number: int) -> np.ndarray:
"""ENHANCED: Apply temporal consistency using optical flow and history"""
try:
if len(self.mask_history) == 0:
return current_mask
previous_mask = self.mask_history[-1]
# Method 1: Optical flow-based consistency
if USE_OPTICAL_FLOW_TRACKING and self.optical_flow_data is not None:
try:
flow_corrected_mask = self._apply_optical_flow_consistency(
frame, current_mask, previous_mask
)
# Blend flow-corrected with current mask
alpha = 0.7 # Weight for current mask
beta = 0.3 # Weight for flow-corrected mask
blended_mask = cv2.addWeighted(
current_mask.astype(np.float32), alpha,
flow_corrected_mask.astype(np.float32), beta, 0
).astype(np.uint8)
self.stats['temporal_corrections'] += 1
except Exception as e:
logger.debug(f"Optical flow consistency failed: {e}")
self.stats['flow_tracking_failures'] += 1
blended_mask = current_mask
else:
blended_mask = current_mask
# Method 2: Multi-frame temporal smoothing
if len(self.mask_history) >= 3:
# Use weighted average of recent masks
weights = [0.5, 0.3, 0.2] # Current, previous, before previous
masks_to_blend = [blended_mask] + self.mask_history[-2:]
temporal_mask = np.zeros_like(blended_mask, dtype=np.float32)
for mask, weight in zip(masks_to_blend, weights):
temporal_mask += mask.astype(np.float32) * weight
blended_mask = np.clip(temporal_mask, 0, 255).astype(np.uint8)
# Method 3: Edge-aware temporal filtering
blended_mask = self._temporal_edge_filtering(frame, blended_mask, current_mask)
return blended_mask
except Exception as e:
logger.warning(f"Temporal consistency failed: {e}")
return current_mask
def _apply_optical_flow_consistency(self, current_frame: np.ndarray,
current_mask: np.ndarray, previous_mask: np.ndarray) -> np.ndarray:
"""Apply optical flow to warp previous mask to current frame"""
try:
# Convert frames to grayscale for optical flow
current_gray = cv2.cvtColor(current_frame, cv2.COLOR_BGR2GRAY)
previous_gray = self.optical_flow_data
# Calculate dense optical flow
flow = cv2.calcOpticalFlowPyrLK(previous_gray, current_gray, None, None)
# Warp previous mask using optical flow
h, w = previous_mask.shape
flow_map = np.zeros((h, w, 2), dtype=np.float32)
# Create flow field
y_coords, x_coords = np.mgrid[0:h, 0:w]
flow_map[:, :, 0] = x_coords + flow[0] if flow[0] is not None else x_coords
flow_map[:, :, 1] = y_coords + flow[1] if flow[1] is not None else y_coords
# Warp previous mask
warped_mask = cv2.remap(previous_mask, flow_map, None, cv2.INTER_LINEAR)
return warped_mask
except Exception as e:
logger.debug(f"Optical flow warping failed: {e}")
return previous_mask
def _temporal_edge_filtering(self, frame: np.ndarray, blended_mask: np.ndarray, current_mask: np.ndarray) -> np.ndarray:
"""Apply edge-aware temporal filtering"""
try:
# Detect edges in current frame
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 150)
# In edge regions, favor the current mask (more responsive)
# In smooth regions, favor the blended mask (more stable)
edge_weight = cv2.GaussianBlur(edges.astype(np.float32), (5, 5), 1.0) / 255.0
filtered_mask = (current_mask.astype(np.float32) * edge_weight +
blended_mask.astype(np.float32) * (1 - edge_weight))
return np.clip(filtered_mask, 0, 255).astype(np.uint8)
except Exception as e:
logger.warning(f"Temporal edge filtering failed: {e}")
return blended_mask
def _adaptive_mask_refinement(self, frame: np.ndarray, mask: np.ndarray,
frame_number: int, hair_regions: Optional[np.ndarray]) -> np.ndarray:
"""ENHANCED: Adaptive mask refinement based on content analysis"""
try:
# Determine refinement strategy based on frame content
refinement_needed = self._assess_refinement_needs(frame, mask, hair_regions)
if refinement_needed['hair_refinement'] and hair_regions is not None:
# Special handling for hair regions
mask = self._refine_hair_regions(frame, mask, hair_regions)
if refinement_needed['edge_refinement']:
# Enhanced edge refinement
mask = self._enhanced_edge_refinement(frame, mask)
if refinement_needed['temporal_refinement']:
# Apply temporal-aware refinement
mask = self._temporal_aware_refinement(frame, mask, frame_number)
# Standard refinement if needed
if self._should_refine_mask(frame_number):
if self.matanyone_model is not None and self.quality_settings.get('edge_refinement', True):
mask = refine_mask_hq(frame, mask, self.matanyone_model)
else:
mask = self._fallback_mask_refinement_enhanced(mask)
return mask
except Exception as e:
logger.warning(f"Adaptive mask refinement failed: {e}")
return self._refine_mask_original(frame, mask, frame_number)
def _assess_refinement_needs(self, frame: np.ndarray, mask: np.ndarray,
hair_regions: Optional[np.ndarray]) -> Dict[str, bool]:
"""Assess what type of refinement is needed for this frame"""
try:
needs = {
'hair_refinement': False,
'edge_refinement': False,
'temporal_refinement': False
}
# Check if hair refinement is needed
if hair_regions is not None and np.any(hair_regions):
needs['hair_refinement'] = True
# Check edge quality
edges = cv2.Canny(mask, 50, 150)
edge_density = np.sum(edges > 0) / (mask.shape[0] * mask.shape[1])
if edge_density > 0.1: # High edge density suggests rough boundaries
needs['edge_refinement'] = True
# Check temporal consistency needs
if len(self.mask_history) > 0:
prev_mask = self.mask_history[-1]
diff = cv2.absdiff(mask, prev_mask)
change_ratio = np.sum(diff > 50) / (mask.shape[0] * mask.shape[1])
if change_ratio > 0.15: # High change suggests temporal inconsistency
needs['temporal_refinement'] = True
return needs
except Exception as e:
logger.warning(f"Refinement assessment failed: {e}")
return {'hair_refinement': False, 'edge_refinement': True, 'temporal_refinement': False}
def _refine_hair_regions(self, frame: np.ndarray, mask: np.ndarray, hair_regions: np.ndarray) -> np.ndarray:
"""Special refinement for hair and fine detail regions"""
try:
# Create a more aggressive mask for hair regions
hair_mask = hair_regions > 0
# Use different thresholding for hair areas
refined_mask = mask.copy()
# In hair regions, use lower threshold (include more pixels)
hair_area_values = mask[hair_mask]
if len(hair_area_values) > 0:
hair_threshold = max(100, np.percentile(hair_area_values, 25)) # Lower threshold for hair
refined_mask[hair_mask] = np.where(mask[hair_mask] > hair_threshold, 255, 0)
# Apply morphological closing to connect hair strands
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel)
return refined_mask
except Exception as e:
logger.warning(f"Hair region refinement failed: {e}")
return mask
def _enhanced_edge_refinement(self, frame: np.ndarray, mask: np.ndarray) -> np.ndarray:
"""Enhanced edge refinement using image gradients"""
try:
# Use bilateral filter to preserve edges while smoothing
refined = cv2.bilateralFilter(mask, 9, 75, 75)
# Edge-guided smoothing
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 150)
# In edge areas, preserve original mask more
edge_weight = cv2.GaussianBlur(edges.astype(np.float32), (3, 3), 1.0) / 255.0
edge_weight = np.clip(edge_weight * 2, 0, 1) # Amplify edge influence
final_mask = (mask.astype(np.float32) * edge_weight +
refined.astype(np.float32) * (1 - edge_weight))
return np.clip(final_mask, 0, 255).astype(np.uint8)
except Exception as e:
logger.warning(f"Enhanced edge refinement failed: {e}")
return mask
def _temporal_aware_refinement(self, frame: np.ndarray, mask: np.ndarray, frame_number: int) -> np.ndarray:
"""Temporal-aware refinement considering motion and stability"""
try:
if len(self.mask_history) == 0:
return mask
# Calculate motion between frames
if self.optical_flow_data is not None:
current_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
motion_magnitude = cv2.absdiff(current_gray, self.optical_flow_data)
motion_mask = motion_magnitude > 10 # Areas with motion
# In high-motion areas, trust current mask more
# In low-motion areas, use temporal smoothing
prev_mask = self.mask_history[-1]
motion_weight = cv2.GaussianBlur(motion_mask.astype(np.float32), (5, 5), 1.0)
motion_weight = np.clip(motion_weight, 0.3, 1.0) # Don't completely ignore temporal info
temporal_mask = (mask.astype(np.float32) * motion_weight +
prev_mask.astype(np.float32) * (1 - motion_weight))
return np.clip(temporal_mask, 0, 255).astype(np.uint8)
return mask
except Exception as e:
logger.warning(f"Temporal-aware refinement failed: {e}")
return mask
def _update_mask_history(self, mask: np.ndarray):
"""Update mask history for temporal consistency"""
self.mask_history.append(mask.copy())
# Keep only recent history (limit memory usage)
max_history = 5
if len(self.mask_history) > max_history:
self.mask_history.pop(0)
def _create_mask_preview_enhanced(self, frame: np.ndarray, mask: np.ndarray,
hair_regions: Optional[np.ndarray]) -> np.ndarray:
"""ENHANCED: Create mask visualization with hair regions highlighted"""
try:
# Create colored mask overlay
mask_colored = np.zeros_like(frame)
mask_colored[:, :, 1] = mask # Green channel for person
# Highlight hair regions in blue if available
if hair_regions is not None:
mask_colored[:, :, 2] = np.maximum(mask_colored[:, :, 2], hair_regions * 255)
# Blend with original frame
alpha = 0.6
preview = cv2.addWeighted(frame, 1-alpha, mask_colored, alpha, 0)
return preview
except Exception as e:
logger.warning(f"Enhanced mask preview creation failed: {e}")
return self._create_mask_preview_original(frame, mask)
def _replace_background_enhanced(self, frame: np.ndarray, mask: np.ndarray,
background: np.ndarray, hair_regions: Optional[np.ndarray]) -> np.ndarray:
"""ENHANCED: Replace background with special handling for hair regions"""
try:
# Standard background replacement
result = replace_background_hq(frame, mask, background)
# If hair regions detected, apply additional processing
if hair_regions is not None and np.any(hair_regions):
result = self._enhance_hair_compositing(frame, mask, background, hair_regions, result)
return result
except Exception as e:
logger.warning(f"Enhanced background replacement failed: {e}")
return replace_background_hq(frame, mask, background)
def _enhance_hair_compositing(self, frame: np.ndarray, mask: np.ndarray,
background: np.ndarray, hair_regions: np.ndarray,
initial_result: np.ndarray) -> np.ndarray:
"""Enhanced compositing specifically for hair regions"""
try:
# In hair regions, use softer alpha blending
hair_mask = hair_regions > 0
if np.any(hair_mask):
# Create soft alpha for hair regions
hair_alpha = cv2.GaussianBlur((hair_regions * mask / 255.0).astype(np.float32), (3, 3), 1.0)
hair_alpha = np.clip(hair_alpha, 0, 1)
# Apply softer blending only in hair regions
for c in range(3):
channel_blend = (frame[:, :, c].astype(np.float32) * hair_alpha +
background[:, :, c].astype(np.float32) * (1 - hair_alpha))
initial_result[:, :, c] = np.where(
hair_mask,
np.clip(channel_blend, 0, 255).astype(np.uint8),
initial_result[:, :, c]
)
return initial_result
except Exception as e:
logger.warning(f"Hair compositing enhancement failed: {e}")
return initial_result
# ============================================================================
# ORIGINAL FUNCTIONS PRESERVED FOR ROLLBACK
# ============================================================================
def _process_single_frame_original(
self,
frame: np.ndarray,
background: np.ndarray,
frame_number: int,
preview_mask: bool,
preview_greenscreen: bool
) -> np.ndarray:
"""ORIGINAL: Process a single video frame (preserved for rollback)"""
try:
# Person segmentation
mask = self._segment_person(frame, frame_number)
# Mask refinement (keyframe-based for performance)
if self._should_refine_mask(frame_number):
refined_mask = self._refine_mask_original(frame, mask, frame_number)
self.last_refined_mask = refined_mask.copy()
else:
# Use temporal consistency with previous refined mask
refined_mask = self._apply_temporal_consistency_original(mask, frame_number)
# Generate output based on mode
if preview_mask:
return self._create_mask_preview_original(frame, refined_mask)
elif preview_greenscreen:
return self._create_greenscreen_preview(frame, refined_mask)
else:
return self._replace_background(frame, refined_mask, background)
except Exception as e:
logger.warning(f"Single frame processing failed: {e}")
raise
def _segment_person(self, frame: np.ndarray, frame_number: int) -> np.ndarray:
"""Perform person segmentation"""
try:
mask = segment_person_hq(frame, self.sam2_predictor)
if mask is None or mask.size == 0:
raise exceptions.SegmentationError(frame_number, "Segmentation returned empty mask")
# Store current frame for optical flow (if enhanced mode enabled)
if USE_OPTICAL_FLOW_TRACKING:
current_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
self.optical_flow_data = current_gray
return mask
except Exception as e:
self.stats['segmentation_errors'] += 1
raise exceptions.SegmentationError(frame_number, f"Segmentation failed: {str(e)}")
def _segment_person_enhanced(self, frame: np.ndarray, frame_number: int) -> np.ndarray:
"""ENHANCED: Perform person segmentation with improvements"""
try:
mask = segment_person_hq(frame, self.sam2_predictor)
if mask is None or mask.size == 0:
raise exceptions.SegmentationError(frame_number, "Segmentation returned empty mask")
# Store current frame for optical flow
current_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
self.optical_flow_data = current_gray
return mask
except Exception as e:
self.stats['segmentation_errors'] += 1
raise exceptions.SegmentationError(frame_number, f"Enhanced segmentation failed: {str(e)}")
def _should_refine_mask(self, frame_number: int) -> bool:
"""Determine if mask should be refined for this frame"""
# Refine on keyframes or if no previous refined mask exists
return (
frame_number % self.quality_settings['keyframe_interval'] == 0 or
self.last_refined_mask is None or
not self.quality_settings.get('temporal_consistency', True)
)
def _refine_mask_original(self, frame: np.ndarray, mask: np.ndarray, frame_number: int) -> np.ndarray:
"""ORIGINAL: Refine mask using MatAnyone or fallback methods"""
try:
if self.matanyone_model is not None and self.quality_settings.get('edge_refinement', True):
refined_mask = refine_mask_hq(frame, mask, self.matanyone_model)
else:
# Fallback refinement using OpenCV operations
refined_mask = self._fallback_mask_refinement(mask)
return refined_mask
except Exception as e:
self.stats['refinement_errors'] += 1
logger.warning(f"Mask refinement failed for frame {frame_number}: {e}")
# Return original mask as fallback
return mask
def _fallback_mask_refinement(self, mask: np.ndarray) -> np.ndarray:
"""ORIGINAL: Fallback mask refinement using basic OpenCV operations"""
try:
# Morphological operations to clean up mask
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
refined = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
refined = cv2.morphologyEx(refined, cv2.MORPH_OPEN, kernel)
# Smooth edges
refined = cv2.GaussianBlur(refined, (3, 3), 1.0)
return refined
except Exception as e:
logger.warning(f"Fallback mask refinement failed: {e}")
return mask
def _fallback_mask_refinement_enhanced(self, mask: np.ndarray) -> np.ndarray:
"""ENHANCED: Improved fallback mask refinement"""
try:
# More aggressive morphological operations
kernel_small = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
kernel_large = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
# Remove small noise
refined = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel_small)
# Fill gaps
refined = cv2.morphologyEx(refined, cv2.MORPH_CLOSE, kernel_large)
# Edge smoothing with bilateral filter instead of Gaussian
refined = cv2.bilateralFilter(refined, 9, 75, 75)
return refined
except Exception as e:
logger.warning(f"Enhanced fallback mask refinement failed: {e}")
return mask
def _apply_temporal_consistency_original(self, current_mask: np.ndarray, frame_number: int) -> np.ndarray:
"""ORIGINAL: Apply temporal consistency using previous refined mask"""
if self.last_refined_mask is None or not self.quality_settings.get('temporal_consistency', True):
return current_mask
try:
# Blend current mask with previous refined mask
alpha = 0.7 # Weight for current mask
beta = 0.3 # Weight for previous mask
# Ensure masks have same shape
if current_mask.shape != self.last_refined_mask.shape:
last_mask = cv2.resize(self.last_refined_mask,
(current_mask.shape[1], current_mask.shape[0]))
else:
last_mask = self.last_refined_mask
# Weighted blend
blended_mask = cv2.addWeighted(current_mask, alpha, last_mask, beta, 0)
# Apply slight smoothing for temporal stability
blended_mask = cv2.GaussianBlur(blended_mask, (3, 3), 0.5)
return blended_mask
except Exception as e:
logger.warning(f"Temporal consistency application failed: {e}")
return current_mask
def _create_mask_preview_original(self, frame: np.ndarray, mask: np.ndarray) -> np.ndarray:
"""ORIGINAL: Create mask visualization preview"""
try:
# Create colored mask overlay
mask_colored = np.zeros_like(frame)
mask_colored[:, :, 1] = mask # Green channel for person
# Blend with original frame
alpha = 0.6
preview = cv2.addWeighted(frame, 1-alpha, mask_colored, alpha, 0)
return preview
except Exception as e:
logger.warning(f"Mask preview creation failed: {e}")
return frame
def _create_greenscreen_preview(self, frame: np.ndarray, mask: np.ndarray) -> np.ndarray:
"""Create green screen preview"""
try:
# Create pure green background
green_bg = np.zeros_like(frame)
green_bg[:, :] = [0, 255, 0] # Pure green in BGR
# Apply mask
mask_3ch = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) if len(mask.shape) == 2 else mask
mask_norm = mask_3ch.astype(np.float32) / 255.0
result = (frame * mask_norm + green_bg * (1 - mask_norm)).astype(np.uint8)
return result
except Exception as e:
logger.warning(f"Greenscreen preview creation failed: {e}")
return frame
def _replace_background(self, frame: np.ndarray, mask: np.ndarray, background: np.ndarray) -> np.ndarray:
"""Replace background using the refined mask"""
try:
result = replace_background_hq(frame, mask, background)
return result
except Exception as e:
logger.warning(f"Background replacement failed: {e}")
return frame
def prepare_background(
self,
background_choice: str,
custom_background_path: Optional[str],
width: int,
height: int
) -> Optional[np.ndarray]:
"""Prepare background image for processing (unchanged)"""
try:
if background_choice == "custom" and custom_background_path:
if not os.path.exists(custom_background_path):
raise exceptions.BackgroundProcessingError("custom", f"File not found: {custom_background_path}")
background = cv2.imread(custom_background_path)
if background is None:
raise exceptions.BackgroundProcessingError("custom", "Could not read custom background image")
logger.info(f"Loaded custom background: {custom_background_path}")
else:
# Use professional background
if background_choice not in PROFESSIONAL_BACKGROUNDS:
raise exceptions.BackgroundProcessingError(background_choice, "Unknown professional background")
bg_config = PROFESSIONAL_BACKGROUNDS[background_choice]
background = create_professional_background(bg_config, width, height)
logger.info(f"Generated professional background: {background_choice}")
# Resize to match video dimensions
if background.shape[:2] != (height, width):
background = cv2.resize(background, (width, height), interpolation=cv2.INTER_LANCZOS4)
# Validate background
if background is None or background.size == 0:
raise exceptions.BackgroundProcessingError(background_choice, "Background image is empty")
return background
except Exception as e:
if isinstance(e, exceptions.BackgroundProcessingError):
logger.error(str(e))
return None
else:
logger.error(f"Unexpected error preparing background: {e}")
return None
def _update_processing_stats(self, video_info: Dict[str, Any],
processing_time: float, result: Dict[str, Any]):
"""Update processing statistics"""
self.stats['videos_processed'] += 1
self.stats['total_frames_processed'] += result['successful_frames']
self.stats['total_processing_time'] += processing_time
self.stats['successful_frames'] += result['successful_frames']
self.stats['failed_frames'] += result['failed_frames']
# Calculate average FPS across all processing
if self.stats['total_processing_time'] > 0:
self.stats['average_fps'] = self.stats['total_frames_processed'] / self.stats['total_processing_time']
def get_processing_capabilities(self) -> Dict[str, Any]:
"""Get current processing capabilities"""
capabilities = {
'sam2_available': self.sam2_predictor is not None,
'matanyone_available': self.matanyone_model is not None,
'quality_preset': self.config.quality_preset,
'supports_temporal_consistency': self.quality_settings.get('temporal_consistency', False),
'supports_edge_refinement': self.quality_settings.get('edge_refinement', False),
'keyframe_interval': self.quality_settings['keyframe_interval'],
'max_resolution': self.config.get_resolution_limits(),
'supported_formats': ['.mp4', '.avi', '.mov', '.mkv'],
'memory_limit_gb': self.memory_manager.memory_limit_gb
}
# Add enhanced capabilities
if USE_TEMPORAL_ENHANCEMENT:
capabilities.update({
'temporal_enhancement': True,
'hair_detection': USE_HAIR_DETECTION,
'optical_flow_tracking': USE_OPTICAL_FLOW_TRACKING,
'adaptive_refinement': USE_ADAPTIVE_REFINEMENT
})
return capabilities
def get_status(self) -> Dict[str, Any]:
"""Get current processor status"""
status = {
'processing_active': self.processing_active,
'models_available': {
'sam2': self.sam2_predictor is not None,
'matanyone': self.matanyone_model is not None
},
'quality_settings': self.quality_settings,
'statistics': self.stats.copy(),
'cache_size': len(self.frame_cache),
'memory_usage': self.memory_manager.get_memory_usage(),
'capabilities': self.get_processing_capabilities()
}
# Add enhanced status
if USE_TEMPORAL_ENHANCEMENT:
status.update({
'mask_history_length': len(self.mask_history),
'hair_cache_size': len(self.hair_regions_cache),
'optical_flow_active': self.optical_flow_data is not None
})
return status
def optimize_for_video(self, video_info: Dict[str, Any]) -> Dict[str, Any]:
"""Optimize settings for specific video characteristics"""
optimizations = {
'original_settings': self.quality_settings.copy(),
'optimizations_applied': []
}
try:
# High resolution video optimizations
if video_info['width'] * video_info['height'] > 1920 * 1080:
if self.quality_settings['keyframe_interval'] < 10:
self.quality_settings['keyframe_interval'] = 10
optimizations['optimizations_applied'].append('increased_keyframe_interval_for_high_res')
# Long video optimizations
if video_info['duration'] > 300: # 5 minutes
if self.config.memory_cleanup_interval > 20:
self.config.memory_cleanup_interval = 20
optimizations['optimizations_applied'].append('increased_memory_cleanup_frequency')
# Low FPS video optimizations
if video_info['fps'] < 15:
self.quality_settings['temporal_consistency'] = False
optimizations['optimizations_applied'].append('disabled_temporal_consistency_for_low_fps')
# Memory-constrained optimizations
memory_usage = self.memory_manager.get_memory_usage()
memory_pressure = self.memory_manager.check_memory_pressure()
if memory_pressure['under_pressure']:
self.quality_settings['edge_refinement'] = False
self.quality_settings['keyframe_interval'] = max(self.quality_settings['keyframe_interval'], 15)
optimizations['optimizations_applied'].extend([
'disabled_edge_refinement_for_memory',
'increased_keyframe_interval_for_memory'
])
optimizations['final_settings'] = self.quality_settings.copy()
if optimizations['optimizations_applied']:
logger.info(f"Applied video optimizations: {optimizations['optimizations_applied']}")
return optimizations
except Exception as e:
logger.warning(f"Video optimization failed: {e}")
return optimizations
def reset_cache(self):
"""Reset frame cache and temporal state"""
self.frame_cache.clear()
self.last_refined_mask = None
self.stats['cache_hits'] = 0
self._reset_temporal_state()
logger.debug("Frame cache and temporal state reset")
def cleanup(self):
"""Clean up processor resources"""
try:
self.reset_cache()
self.processing_active = False
logger.info("CoreVideoProcessor cleanup completed")
except Exception as e:
logger.warning(f"Error during cleanup: {e}")