MogensR's picture
Create utils/refinement.py
a0ffb03
raw
history blame
8.06 kB
#!/usr/bin/env python3
"""
utils.refinement
─────────────────────────────────────────────────────────────────────────────
Single-frame mask refinement for BackgroundFX Pro.
Public API
----------
refine_mask_hq(image, mask, matanyone_processor, fallback_enabled=True) -> np.ndarray
"""
from __future__ import annotations
from typing import Any, Tuple, Optional
import logging, cv2, torch, numpy as np
log = logging.getLogger(__name__)
# Quality thresholds (same as before)
MIN_AREA_RATIO = 0.015
MAX_AREA_RATIO = 0.97
# ────────────────────────────────────────────────────────────────────────────
# Public
# ────────────────────────────────────────────────────────────────────────────
__all__ = ["refine_mask_hq"]
def refine_mask_hq(
image: np.ndarray,
mask: np.ndarray,
matanyone_processor: Any,
fallback_enabled: bool = True,
) -> np.ndarray:
"""
1) Try MatAnyOne high-quality refinement.
2) Otherwise OpenCV β€œenhanced” filter.
3) GrabCut and saliency fallbacks.
Always returns uint8 mask (0/255).
"""
mask = _process_mask(mask)
# 1 β€” MatAnyOne
if matanyone_processor is not None:
try:
refined = _matanyone_refine(image, mask, matanyone_processor)
if refined is not None and _validate_mask_quality(refined, image.shape[:2]):
return refined
log.warning("MatAnyOne produced poor mask; fallback")
except Exception as e:
log.warning(f"MatAnyOne error: {e}")
# 2 β€” OpenCV β€œenhanced” bilateral+guided+MORPH
try:
refined = _opencv_enhance(image, mask)
if _validate_mask_quality(refined, image.shape[:2]):
return refined
except Exception as e:
log.debug(f"OpenCV enhance error: {e}")
# 3 β€” GrabCut + saliency double-fallback
try:
gc = _refine_with_grabcut(image, mask)
if _validate_mask_quality(gc, image.shape[:2]):
return gc
sal = _refine_with_saliency(image, mask)
if _validate_mask_quality(sal, image.shape[:2]):
return sal
except Exception as e:
log.debug(f"GrabCut/saliency fallback error: {e}")
# last resort
return mask if fallback_enabled else _opencv_enhance(image, mask)
# ────────────────────────────────────────────────────────────────────────────
# MatAnyOne wrapper (safe)
# ────────────────────────────────────────────────────────────────────────────
def _matanyone_refine(img, mask, proc) -> Optional[np.ndarray]:
if not (hasattr(proc, "step") and hasattr(proc, "output_prob_to_mask")):
return None
# image tensor (C,H,W) float32 0-1
anp = img.astype(np.float32)
if anp.max() > 1: anp /= 255.0
anp = np.transpose(anp, (2,0,1))
img_t = torch.from_numpy(anp).unsqueeze(0).to(proc.device if hasattr(proc,"device") else "cpu")
mask_f = mask.astype(np.float32)/255.0
mask_t = torch.from_numpy(mask_f).unsqueeze(0).to(img_t.device)
with torch.no_grad():
prob = proc.step(img_t, mask_t, objects=[1])
m = proc.output_prob_to_mask(prob).squeeze().cpu().numpy()
if m.max() <= 1: m *= 255
return m.astype(np.uint8)
# ────────────────────────────────────────────────────────────────────────────
# OpenCV enhanced filter chain
# ────────────────────────────────────────────────────────────────────────────
def _opencv_enhance(img, mask):
if mask.ndim == 3: mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
if mask.max()<=1: mask = (mask*255).astype(np.uint8)
m = cv2.bilateralFilter(mask, 9, 75, 75)
m = _guided_filter(img, m, r=8, eps=0.2)
m = cv2.morphologyEx(m, cv2.MORPH_CLOSE, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5)))
m = cv2.morphologyEx(m, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)))
m = cv2.GaussianBlur(m,(3,3),0.8)
_,m = cv2.threshold(m,127,255,cv2.THRESH_BINARY)
return m
def _guided_filter(guide, mask, r=8, eps=0.2):
g = cv2.cvtColor(guide, cv2.COLOR_BGR2GRAY).astype(np.float32)/255.0
m = mask.astype(np.float32)/255.0
k = 2*r+1
mean_g = cv2.boxFilter(g, -1, (k,k))
mean_m = cv2.boxFilter(m, -1, (k,k))
corr_gm = cv2.boxFilter(g*m, -1, (k,k))
cov = corr_gm - mean_g*mean_m
var_g = cv2.boxFilter(g*g, -1, (k,k)) - mean_g*mean_g
a = cov/(var_g+eps)
b = mean_m - a*mean_g
mean_a = cv2.boxFilter(a, -1, (k,k))
mean_b = cv2.boxFilter(b, -1, (k,k))
out = (mean_a*g+mean_b)*255
return out.astype(np.uint8)
# ────────────────────────────────────────────────────────────────────────────
# GrabCut & saliency fallbacks
# ────────────────────────────────────────────────────────────────────────────
def _refine_with_grabcut(img, seed):
h,w = img.shape[:2]
gc = np.full((h,w), cv2.GC_PR_BGD, np.uint8)
gc[seed>200] = cv2.GC_FGD
rect = (w//4, h//6, w//2, int(h*0.7))
bgd,fgd = np.zeros((1,65),np.float64), np.zeros((1,65),np.float64)
cv2.grabCut(img, gc, rect, bgd, fgd, 3, cv2.GC_INIT_WITH_MASK)
return np.where((gc==cv2.GC_FGD)|(gc==cv2.GC_PR_FGD),255,0).astype(np.uint8)
def _refine_with_saliency(img, seed):
sal = _compute_saliency(img)
if sal is None: return seed
high = (sal>0.6).astype(np.uint8)*255
cy,cx = img.shape[0]//2, img.shape[1]//2
if np.any(seed>127):
ys,xs = np.where(seed>127); cy,cx=int(np.mean(ys)),int(np.mean(xs))
ff = high.copy(); cv2.floodFill(ff,None,(cx,cy),255,loDiff=5,upDiff=5)
return ff
def _compute_saliency(img):
try:
if hasattr(cv2,"saliency"):
s=cv2.saliency.StaticSaliencySpectralResidual_create()
ok,sm=s.computeSaliency(img)
if ok: return (sm-sm.min())/max(1e-6,sm.max()-sm.min())
except Exception: pass
return None
# ────────────────────────────────────────────────────────────────────────────
# Helpers
# ────────────────────────────────────────────────────────────────────────────
def _process_mask(mask):
if mask.ndim==3: mask=cv2.cvtColor(mask,cv2.COLOR_BGR2GRAY)
if mask.dtype!=np.uint8:
mask = (mask*255).astype(np.uint8) if mask.max()<=1 else mask.astype(np.uint8)
_,mask=cv2.threshold(mask,127,255,cv2.THRESH_BINARY)
return mask
def _validate_mask_quality(mask, shape: Tuple[int,int]) -> bool:
h,w = shape
ratio = np.sum(mask>127)/(h*w)
return MIN_AREA_RATIO <= ratio <= MAX_AREA_RATIO