|
|
|
|
|
""" |
|
|
utils.background_factory |
|
|
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ |
|
|
Generates professional backgrounds from presets **or** a user-supplied image. |
|
|
|
|
|
Public API |
|
|
---------- |
|
|
create_professional_background(cfg_or_key, width, height) β np.ndarray (BGR) |
|
|
|
|
|
All lower-case helpers are considered private to this module. |
|
|
""" |
|
|
|
|
|
from __future__ import annotations |
|
|
from pathlib import Path |
|
|
from typing import Dict, Any, List, Tuple, Optional |
|
|
import logging, os, cv2, numpy as np |
|
|
|
|
|
from utils.background_presets import PROFESSIONAL_BACKGROUNDS |
|
|
|
|
|
log = logging.getLogger(__name__) |
|
|
|
|
|
__all__ = ["create_professional_background"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_professional_background( |
|
|
bg_config: Dict[str, Any] | str, |
|
|
width: int, |
|
|
height: int, |
|
|
) -> np.ndarray: |
|
|
""" |
|
|
Accepts either β¦ |
|
|
β’ a **key** into PROFESSIONAL_BACKGROUNDS (e.g. "office_modern"), or |
|
|
β’ a **dict** (typically supplied by UI) that may include: |
|
|
β background_choice: "office_modern" |
|
|
β custom_path: "/path/to/image.png" |
|
|
β OR directly contain {type:"gradient", colors:[β¦]} |
|
|
Returns **BGR** uint8 image (OpenCV-ready). |
|
|
""" |
|
|
try: |
|
|
|
|
|
choice : str = "minimalist" |
|
|
custom_path : str | None = None |
|
|
direct_style : Dict[str, Any] | None = None |
|
|
|
|
|
if isinstance(bg_config, str): |
|
|
choice = bg_config.lower() |
|
|
|
|
|
elif isinstance(bg_config, dict): |
|
|
choice = bg_config.get("background_choice", bg_config.get("name", "minimalist")).lower() |
|
|
custom_path = bg_config.get("custom_path") |
|
|
if "type" in bg_config and "colors" in bg_config: |
|
|
direct_style = bg_config |
|
|
|
|
|
|
|
|
if custom_path and os.path.exists(custom_path): |
|
|
img = cv2.imread(custom_path, cv2.IMREAD_COLOR) |
|
|
if img is not None: |
|
|
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
|
fitted = _fit_image_letterbox(img_rgb, width, height, fill=(32,32,32)) |
|
|
return cv2.cvtColor(fitted, cv2.COLOR_RGB2BGR) |
|
|
log.warning(f"Custom-background read failed: {custom_path}") |
|
|
|
|
|
|
|
|
if direct_style: |
|
|
if direct_style["type"] == "color": |
|
|
bg = _create_solid_background(direct_style, width, height) |
|
|
else: |
|
|
bg = _create_gradient_background(direct_style, width, height) |
|
|
return _apply_bg_adjustments(bg, direct_style) |
|
|
|
|
|
|
|
|
preset = PROFESSIONAL_BACKGROUNDS.get(choice, PROFESSIONAL_BACKGROUNDS["minimalist"]) |
|
|
|
|
|
if preset["type"] == "color": |
|
|
bg = _create_solid_background(preset, width, height) |
|
|
elif preset["type"] == "image": |
|
|
path = Path(preset["path"]) |
|
|
if path.exists(): |
|
|
img_bgr = cv2.imread(str(path), cv2.IMREAD_COLOR) |
|
|
if img_bgr is not None: |
|
|
return cv2.resize(img_bgr, (width, height), interpolation=cv2.INTER_LANCZOS4) |
|
|
log.warning(f"Preset image not found: {path}; falling back to gradient") |
|
|
bg = _create_gradient_background( |
|
|
{**preset, "type": "gradient", "colors": ["#3a3a3a", "#2e2e2e"]}, width, height |
|
|
) |
|
|
else: |
|
|
bg = _create_gradient_background(preset, width, height) |
|
|
|
|
|
return _apply_bg_adjustments(bg, preset) |
|
|
|
|
|
except Exception as e: |
|
|
log.error(f"create_professional_background: {e}") |
|
|
return np.full((height, width, 3), (128,128,128), np.uint8) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _fit_image_letterbox(img_rgb: np.ndarray, dst_w: int, dst_h: int, |
|
|
fill=(32,32,32)) -> np.ndarray: |
|
|
h, w = img_rgb.shape[:2] |
|
|
if h == 0 or w == 0: |
|
|
return np.full((dst_h, dst_w, 3), fill, np.uint8) |
|
|
|
|
|
src_a = w / h |
|
|
dst_a = dst_w / dst_h |
|
|
if src_a > dst_a: |
|
|
new_w, new_h = dst_w, int(dst_w / src_a) |
|
|
else: |
|
|
new_h, new_w = dst_h, int(dst_h * src_a) |
|
|
|
|
|
resized = cv2.resize(img_rgb, (new_w, new_h), interpolation=cv2.INTER_AREA) |
|
|
canvas = np.full((dst_h, dst_w, 3), fill, np.uint8) |
|
|
y0 = (dst_h-new_h)//2; x0 = (dst_w-new_w)//2 |
|
|
canvas[y0:y0+new_h, x0:x0+new_w] = resized |
|
|
return canvas |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _create_solid_background(style: Dict[str,Any], w: int, h: int) -> np.ndarray: |
|
|
clr_hex = style["colors"][0].lstrip("#") |
|
|
rgb = tuple(int(clr_hex[i:i+2],16) for i in (0,2,4)) |
|
|
return np.full((h,w,3), rgb[::-1], np.uint8) |
|
|
|
|
|
def _create_gradient_background(style: Dict[str,Any], w:int, h:int) -> np.ndarray: |
|
|
cols = [hex.lstrip("#") for hex in style["colors"]] |
|
|
rgbs = [tuple(int(c[i:i+2],16) for i in (0,2,4)) for c in cols] |
|
|
dirn = style.get("direction","vertical") |
|
|
|
|
|
if dirn=="vertical": grad = _grad_vertical(rgbs, w, h) |
|
|
elif dirn=="horizontal": grad = _grad_horizontal(rgbs, w, h) |
|
|
elif dirn=="diagonal": grad = _grad_diagonal(rgbs, w, h) |
|
|
else: grad = _grad_radial(rgbs, w, h, |
|
|
soft=(dirn=="soft_radial")) |
|
|
return cv2.cvtColor(grad, cv2.COLOR_RGB2BGR) |
|
|
|
|
|
|
|
|
|
|
|
def _grad_vertical(colors, w, h): |
|
|
g = np.zeros((h, w, 3), np.uint8) |
|
|
for y in range(h): |
|
|
g[y, :] = _interp_multi(colors, y/h) |
|
|
return g |
|
|
def _grad_horizontal(colors, w, h): |
|
|
g = np.zeros((h, w, 3), np.uint8) |
|
|
for x in range(w): |
|
|
g[:, x] = _interp_multi(colors, x/w) |
|
|
return g |
|
|
def _grad_diagonal(colors, w, h): |
|
|
y,x = np.mgrid[0:h, 0:w] |
|
|
prog = np.clip((x+y)/(h+w), 0, 1) |
|
|
g = np.zeros((h,w,3), np.uint8) |
|
|
for c in range(3): |
|
|
g[:,:,c] = _vector_interp(colors, prog, c) |
|
|
return g |
|
|
def _grad_radial(colors, w, h, soft=False): |
|
|
cx, cy = w/2, h/2 |
|
|
maxd = np.hypot(cx, cy) |
|
|
y,x = np.mgrid[0:h, 0:w] |
|
|
prog = np.clip(np.hypot(x-cx, y-cy)/maxd, 0, 1) |
|
|
if soft: prog = prog**0.7 |
|
|
g = np.zeros((h,w,3), np.uint8) |
|
|
for c in range(3): |
|
|
g[:,:,c] = _vector_interp(colors, prog, c) |
|
|
return g |
|
|
|
|
|
def _vector_interp(cols, prog, chan): |
|
|
if len(cols)==1: |
|
|
return np.full_like(prog, cols[0][chan], np.uint8) |
|
|
segs = len(cols)-1 |
|
|
seg_prog = prog*segs |
|
|
idx = np.clip(np.floor(seg_prog).astype(int), 0, segs-1) |
|
|
local = seg_prog - idx |
|
|
start = np.take([c[chan] for c in cols], idx) |
|
|
end = np.take([c[chan] for c in cols[1:]+[cols[-1]]], idx) |
|
|
return (start + (end-start)*local).astype(np.uint8) |
|
|
|
|
|
def _interp_multi(cols, p): |
|
|
|
|
|
if len(cols)==1: return cols[0] |
|
|
seg = p*(len(cols)-1) |
|
|
i = int(seg) |
|
|
l = seg - i |
|
|
c1, c2 = cols[i], cols[min(i+1, len(cols)-1)] |
|
|
return tuple(int(c1[c]+(c2[c]-c1[c])*l) for c in range(3)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _apply_bg_adjustments(bg: np.ndarray, cfg: Dict[str,Any]) -> np.ndarray: |
|
|
bright = cfg.get("brightness",1.0) |
|
|
contrast = cfg.get("contrast",1.0) |
|
|
if bright==1.0 and contrast==1.0: |
|
|
return bg |
|
|
out = bg.astype(np.float32)*contrast*bright |
|
|
return np.clip(out,0,255).astype(np.uint8) |
|
|
|