MogensR's picture
Update models/loaders/model_loader.py
9685fa7
raw
history blame
16.5 kB
#!/usr/bin/env python3
"""
Model Loader for Hugging Face Spaces
- Robust SAM2 loader with multiple strategies
- Correct MatAnyOne loader via official InferenceCore (no transformers)
- Clean progress reporting, cleanup, and diagnostics
"""
from __future__ import annotations
import os
import gc
import time
import logging
import traceback
from pathlib import Path
from typing import Optional, Dict, Any, Tuple, Callable
import torch
from core.exceptions import ModelLoadingError
from utils.hardware.device_manager import DeviceManager
from utils.system.memory_manager import MemoryManager
logger = logging.getLogger(__name__)
# ------------------------------
# Data wrapper
# ------------------------------
class LoadedModel:
def __init__(self, model=None, model_id: str = "", load_time: float = 0.0, device: str = "", framework: str = ""):
self.model = model
self.model_id = model_id
self.load_time = load_time
self.device = device
self.framework = framework
def to_dict(self) -> Dict[str, Any]:
return {
"model_id": self.model_id,
"framework": self.framework,
"device": self.device,
"load_time": self.load_time,
"loaded": self.model is not None,
}
# ------------------------------
# Loader
# ------------------------------
class ModelLoader:
def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
self.device_manager = device_mgr
self.memory_manager = memory_mgr
self.device = self.device_manager.get_optimal_device() # e.g., cuda:0 or cpu
self.sam2_predictor: Optional[LoadedModel] = None
self.matanyone_model: Optional[LoadedModel] = None
self.checkpoints_dir = "./checkpoints"
os.makedirs(self.checkpoints_dir, exist_ok=True)
self.loading_stats = {
"sam2_load_time": 0.0,
"matanyone_load_time": 0.0,
"total_load_time": 0.0,
"models_loaded": False,
"loading_attempts": 0,
}
logger.info(f"ModelLoader initialized for device: {self.device}")
# ---------- Public API ----------
def load_all_models(
self, progress_callback: Optional[Callable[[float, str], None]] = None, cancel_event=None
) -> Tuple[Optional[LoadedModel], Optional[LoadedModel]]:
"""
Loads SAM2 + MatAnyOne. Returns (LoadedModel|None, LoadedModel|None).
"""
start_time = time.time()
self.loading_stats["loading_attempts"] += 1
try:
logger.info("Starting model loading process...")
if progress_callback:
progress_callback(0.0, "Initializing model loading...")
self._cleanup_models()
# ---- SAM2 ----
logger.info("Loading SAM2 predictor...")
if progress_callback:
progress_callback(0.1, "Loading SAM2 predictor...")
sam2_loaded = self._load_sam2_predictor(progress_callback)
if sam2_loaded is None:
logger.warning("SAM2 loading failed - a limited fallback will be used at runtime if needed.")
else:
self.sam2_predictor = sam2_loaded
self.loading_stats["sam2_load_time"] = self.sam2_predictor.load_time
logger.info(f"SAM2 loaded in {self.loading_stats['sam2_load_time']:.2f}s")
# Early exit if cancelled
if cancel_event is not None and getattr(cancel_event, "is_set", lambda: False)():
if progress_callback:
progress_callback(1.0, "Model loading cancelled")
return self.sam2_predictor, None
# ---- MatAnyOne ----
logger.info("Loading MatAnyOne model...")
if progress_callback:
progress_callback(0.6, "Loading MatAnyOne model...")
matanyone_loaded = self._load_matanyone(progress_callback)
if matanyone_loaded is None:
logger.warning("MatAnyOne loading failed - will use simple refinement fallbacks.")
else:
self.matanyone_model = matanyone_loaded
self.loading_stats["matanyone_load_time"] = self.matanyone_model.load_time
logger.info(f"MatAnyOne loaded in {self.loading_stats['matanyone_load_time']:.2f}s")
# ---- Final status ----
total_time = time.time() - start_time
self.loading_stats["total_load_time"] = total_time
self.loading_stats["models_loaded"] = bool(self.sam2_predictor or self.matanyone_model)
if progress_callback:
if self.loading_stats["models_loaded"]:
progress_callback(1.0, "Models loaded (fallbacks available if any model failed)")
else:
progress_callback(1.0, "Using fallback methods (models failed to load)")
logger.info(f"Model loading completed in {total_time:.2f}s")
return self.sam2_predictor, self.matanyone_model
except Exception as e:
error_msg = f"Model loading failed: {str(e)}"
logger.error(f"{error_msg}\n{traceback.format_exc()}")
self._cleanup_models()
self.loading_stats["models_loaded"] = False
if progress_callback:
progress_callback(1.0, f"Error: {error_msg}")
return None, None
def reload_models(self, progress_callback: Optional[Callable[[float, str], None]] = None) -> Tuple[
Optional[LoadedModel], Optional[LoadedModel]
]:
logger.info("Reloading models...")
self._cleanup_models()
self.loading_stats["models_loaded"] = False
return self.load_all_models(progress_callback)
@property
def models_ready(self) -> bool:
return self.sam2_predictor is not None or self.matanyone_model is not None
def get_sam2(self):
return self.sam2_predictor.model if self.sam2_predictor is not None else None
def get_matanyone(self):
return self.matanyone_model.model if self.matanyone_model is not None else None
def validate_models(self) -> bool:
try:
ok = False
if self.sam2_predictor is not None:
model = self.sam2_predictor.model
if hasattr(model, "set_image") or hasattr(model, "predict"):
ok = True
if self.matanyone_model is not None:
ok = True
return ok
except Exception as e:
logger.error(f"Model validation failed: {e}")
return False
def get_model_info(self) -> Dict[str, Any]:
info = {
"models_loaded": self.loading_stats["models_loaded"],
"sam2_loaded": self.sam2_predictor is not None,
"matanyone_loaded": self.matanyone_model is not None,
"device": str(self.device),
"loading_stats": self.loading_stats.copy(),
}
if self.sam2_predictor is not None:
info["sam2_model_type"] = type(self.sam2_predictor.model).__name__
info["sam2_metadata"] = self.sam2_predictor.to_dict()
if self.matanyone_model is not None:
info["matanyone_model_type"] = type(self.matanyone_model.model).__name__
info["matanyone_metadata"] = self.matanyone_model.to_dict()
return info
def get_load_summary(self) -> str:
if not self.loading_stats["models_loaded"]:
return "Models not loaded"
sam2_time = self.loading_stats["sam2_load_time"]
matanyone_time = self.loading_stats["matanyone_load_time"]
total_time = self.loading_stats["total_load_time"]
summary = f"Models loaded in {total_time:.1f}s\n"
if self.sam2_predictor:
summary += f"✓ SAM2: {sam2_time:.1f}s (ID: {self.sam2_predictor.model_id})\n"
else:
summary += "✗ SAM2: Failed (using fallback)\n"
if self.matanyone_model:
summary += f"✓ MatAnyOne: {matanyone_time:.1f}s (ID: {self.matanyone_model.model_id})\n"
else:
summary += "✗ MatAnyOne: Failed (using simple refinement)\n"
summary += f"Device: {self.device}"
return summary
def cleanup(self):
self._cleanup_models()
logger.info("ModelLoader cleanup completed")
# ---------- Internal: SAM2 ----------
def _load_sam2_predictor(self, progress_callback: Optional[Callable[[float, str], None]] = None) -> Optional[LoadedModel]:
"""
Try multiple SAM2 loading strategies: official -> transformers -> dummy fallback.
"""
# Choose model size heuristically
model_size = "large"
try:
if hasattr(self.device_manager, "get_device_memory_gb"):
memory_gb = self.device_manager.get_device_memory_gb()
if memory_gb < 4:
model_size = "tiny"
elif memory_gb < 8:
model_size = "small"
elif memory_gb < 12:
model_size = "base"
logger.info(f"Selected SAM2 {model_size} based on {memory_gb}GB VRAM")
except Exception as e:
logger.warning(f"Could not determine device memory: {e}")
model_size = "tiny"
model_map = {
"tiny": "facebook/sam2.1-hiera-tiny",
"small": "facebook/sam2.1-hiera-small",
"base": "facebook/sam2.1-hiera-base-plus",
"large": "facebook/sam2.1-hiera-large",
}
model_id = model_map.get(model_size, model_map["tiny"])
if progress_callback:
progress_callback(0.3, f"Loading SAM2 ({model_size})...")
methods = [
("official", self._try_load_sam2_official, model_id),
("direct", self._try_load_sam2_direct, model_id),
("manual", self._try_load_sam2_manual, model_id),
]
for name, fn, mid in methods:
try:
logger.info(f"Attempting SAM2 load via {name} method ({mid})...")
result = fn(mid)
if result is not None:
logger.info(f"SAM2 loaded successfully via {name} method")
return result
except Exception as e:
logger.error(f"SAM2 {name} method failed: {e}")
logger.debug(traceback.format_exc())
continue
logger.error("All SAM2 loading methods failed")
return None
def _try_load_sam2_official(self, model_id: str) -> Optional[LoadedModel]:
"""
Official predictor path (Meta's SAM2ImagePredictor).
"""
from sam2.sam2_image_predictor import SAM2ImagePredictor
# Space-specific hub flags
os.environ["HF_HUB_DISABLE_SYMLINKS"] = "1"
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0"
cache_dir = os.path.join(self.checkpoints_dir, "sam2_cache")
os.makedirs(cache_dir, exist_ok=True)
t0 = time.time()
predictor = SAM2ImagePredictor.from_pretrained(
model_id,
cache_dir=cache_dir,
local_files_only=False,
trust_remote_code=True,
)
if hasattr(predictor, "model"):
predictor.model = predictor.model.to(self.device)
t1 = time.time()
return LoadedModel(
model=predictor, model_id=model_id, load_time=t1 - t0, device=str(self.device), framework="sam2"
)
def _try_load_sam2_direct(self, model_id: str) -> Optional[LoadedModel]:
"""
Transformers AutoModel path (best-effort; API may vary).
"""
from transformers import AutoModel, AutoProcessor
t0 = time.time()
model = AutoModel.from_pretrained(
model_id,
trust_remote_code=True,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
).to(self.device)
try:
processor = AutoProcessor.from_pretrained(model_id)
except Exception:
processor = None
t1 = time.time()
class SAM2Wrapper:
def __init__(self, model, processor=None):
self.model = model
self.processor = processor
def set_image(self, image):
self.current_image = image
def predict(self, *args, **kwargs):
return self.model(*args, **kwargs)
wrapped = SAM2Wrapper(model, processor)
return LoadedModel(
model=wrapped,
model_id=model_id,
load_time=t1 - t0,
device=str(self.device),
framework="sam2-transformers",
)
def _try_load_sam2_manual(self, model_id: str) -> Optional[LoadedModel]:
"""
Dummy fallback that won't crash the app.
"""
class DummySAM2:
def __init__(self, device):
self.device = device
self.model = None
def set_image(self, image):
self.current_image = image
def predict(self, point_coords=None, point_labels=None, box=None, **kwargs):
import numpy as np
if hasattr(self, "current_image"):
h, w = self.current_image.shape[:2]
else:
h, w = 512, 512
return {
"masks": np.ones((1, h, w), dtype=np.float32),
"scores": np.array([0.5]),
"logits": np.ones((1, h, w), dtype=np.float32),
}
t0 = time.time()
dummy = DummySAM2(self.device)
t1 = time.time()
logger.warning("Using manual SAM2 fallback (limited functionality)")
return LoadedModel(
model=dummy, model_id=f"{model_id}-fallback", load_time=t1 - t0, device=str(self.device), framework="sam2-fallback"
)
# ---------- Internal: MatAnyOne ----------
def _load_matanyone(self, progress_callback: Optional[Callable[[float, str], None]] = None) -> Optional[LoadedModel]:
"""
Correct MatAnyOne loader using official package API.
"""
if progress_callback:
progress_callback(0.7, "Loading MatAnyOne (InferenceCore)...")
try:
return self._try_load_matanyone_official()
except Exception as e:
logger.error(f"MatAnyOne official loader failed: {e}")
logger.debug(traceback.format_exc())
logger.warning("Falling back to simple MatAnyOne placeholder.")
return self._try_load_matanyone_fallback()
def _try_load_matanyone_official(self) -> Optional[LoadedModel]:
"""
Official MatAnyOne via package's InferenceCore.
IMPORTANT: pass model id POSITIONALLY; do NOT use repo_id= or transformers.
"""
from matanyone import InferenceCore
t0 = time.time()
processor = InferenceCore("PeiqingYang/MatAnyone")
t1 = time.time()
return LoadedModel(
model=processor,
model_id="PeiqingYang/MatAnyone",
load_time=t1 - t0,
device=str(self.device),
framework="matanyone",
)
def _try_load_matanyone_fallback(self) -> Optional[LoadedModel]:
"""
Minimal placeholder that safely passes masks through.
"""
class FallbackMatAnyone:
def __init__(self, device):
self.device = device
def process(self, image, mask):
# Identity pass-through (keeps pipeline alive)
return mask
t0 = time.time()
model = FallbackMatAnyone(self.device)
t1 = time.time()
logger.warning("Using MatAnyOne fallback (limited functionality)")
return LoadedModel(
model=model, model_id="MatAnyone-fallback", load_time=t1 - t0, device=str(self.device), framework="matanyone-fallback"
)
# ---------- Internal: cleanup ----------
def _cleanup_models(self):
if self.sam2_predictor is not None:
del self.sam2_predictor
self.sam2_predictor = None
if self.matanyone_model is not None:
del self.matanyone_model
self.matanyone_model = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
logger.debug("Model cleanup completed")