File size: 16,510 Bytes
baea23e a00a1ac 9685fa7 a00a1ac 9685fa7 a00a1ac baea23e a00a1ac baea23e a00a1ac 9685fa7 7d67503 9685fa7 7d67503 9685fa7 7d67503 9685fa7 a00a1ac 644d7d5 bcb51b3 9685fa7 baea23e 9685fa7 baea23e a00a1ac baea23e a00a1ac 9685fa7 a00a1ac 462ff09 baea23e 462ff09 9685fa7 a00a1ac 9685fa7 baea23e a00a1ac bcb51b3 baea23e a00a1ac baea23e 9685fa7 a00a1ac bcb51b3 9685fa7 baea23e 7d67503 9685fa7 260d38d 7d67503 9685fa7 baea23e 9685fa7 baea23e bcb51b3 baea23e 9685fa7 baea23e 7d67503 9685fa7 260d38d 7d67503 9685fa7 baea23e 9685fa7 a00a1ac 9685fa7 baea23e bcb51b3 9685fa7 260d38d baea23e 260d38d 9685fa7 baea23e a00a1ac 9685fa7 bcb51b3 462ff09 9685fa7 baea23e 9685fa7 bcb51b3 31653b7 bcb51b3 260d38d 31653b7 9685fa7 baea23e 9685fa7 baea23e 31653b7 9685fa7 31653b7 9685fa7 31653b7 8695f97 baea23e 31653b7 9685fa7 baea23e 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 9685fa7 8695f97 462ff09 9685fa7 a00a1ac 260d38d a00a1ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
#!/usr/bin/env python3
"""
Model Loader for Hugging Face Spaces
- Robust SAM2 loader with multiple strategies
- Correct MatAnyOne loader via official InferenceCore (no transformers)
- Clean progress reporting, cleanup, and diagnostics
"""
from __future__ import annotations
import os
import gc
import time
import logging
import traceback
from pathlib import Path
from typing import Optional, Dict, Any, Tuple, Callable
import torch
from core.exceptions import ModelLoadingError
from utils.hardware.device_manager import DeviceManager
from utils.system.memory_manager import MemoryManager
logger = logging.getLogger(__name__)
# ------------------------------
# Data wrapper
# ------------------------------
class LoadedModel:
def __init__(self, model=None, model_id: str = "", load_time: float = 0.0, device: str = "", framework: str = ""):
self.model = model
self.model_id = model_id
self.load_time = load_time
self.device = device
self.framework = framework
def to_dict(self) -> Dict[str, Any]:
return {
"model_id": self.model_id,
"framework": self.framework,
"device": self.device,
"load_time": self.load_time,
"loaded": self.model is not None,
}
# ------------------------------
# Loader
# ------------------------------
class ModelLoader:
def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
self.device_manager = device_mgr
self.memory_manager = memory_mgr
self.device = self.device_manager.get_optimal_device() # e.g., cuda:0 or cpu
self.sam2_predictor: Optional[LoadedModel] = None
self.matanyone_model: Optional[LoadedModel] = None
self.checkpoints_dir = "./checkpoints"
os.makedirs(self.checkpoints_dir, exist_ok=True)
self.loading_stats = {
"sam2_load_time": 0.0,
"matanyone_load_time": 0.0,
"total_load_time": 0.0,
"models_loaded": False,
"loading_attempts": 0,
}
logger.info(f"ModelLoader initialized for device: {self.device}")
# ---------- Public API ----------
def load_all_models(
self, progress_callback: Optional[Callable[[float, str], None]] = None, cancel_event=None
) -> Tuple[Optional[LoadedModel], Optional[LoadedModel]]:
"""
Loads SAM2 + MatAnyOne. Returns (LoadedModel|None, LoadedModel|None).
"""
start_time = time.time()
self.loading_stats["loading_attempts"] += 1
try:
logger.info("Starting model loading process...")
if progress_callback:
progress_callback(0.0, "Initializing model loading...")
self._cleanup_models()
# ---- SAM2 ----
logger.info("Loading SAM2 predictor...")
if progress_callback:
progress_callback(0.1, "Loading SAM2 predictor...")
sam2_loaded = self._load_sam2_predictor(progress_callback)
if sam2_loaded is None:
logger.warning("SAM2 loading failed - a limited fallback will be used at runtime if needed.")
else:
self.sam2_predictor = sam2_loaded
self.loading_stats["sam2_load_time"] = self.sam2_predictor.load_time
logger.info(f"SAM2 loaded in {self.loading_stats['sam2_load_time']:.2f}s")
# Early exit if cancelled
if cancel_event is not None and getattr(cancel_event, "is_set", lambda: False)():
if progress_callback:
progress_callback(1.0, "Model loading cancelled")
return self.sam2_predictor, None
# ---- MatAnyOne ----
logger.info("Loading MatAnyOne model...")
if progress_callback:
progress_callback(0.6, "Loading MatAnyOne model...")
matanyone_loaded = self._load_matanyone(progress_callback)
if matanyone_loaded is None:
logger.warning("MatAnyOne loading failed - will use simple refinement fallbacks.")
else:
self.matanyone_model = matanyone_loaded
self.loading_stats["matanyone_load_time"] = self.matanyone_model.load_time
logger.info(f"MatAnyOne loaded in {self.loading_stats['matanyone_load_time']:.2f}s")
# ---- Final status ----
total_time = time.time() - start_time
self.loading_stats["total_load_time"] = total_time
self.loading_stats["models_loaded"] = bool(self.sam2_predictor or self.matanyone_model)
if progress_callback:
if self.loading_stats["models_loaded"]:
progress_callback(1.0, "Models loaded (fallbacks available if any model failed)")
else:
progress_callback(1.0, "Using fallback methods (models failed to load)")
logger.info(f"Model loading completed in {total_time:.2f}s")
return self.sam2_predictor, self.matanyone_model
except Exception as e:
error_msg = f"Model loading failed: {str(e)}"
logger.error(f"{error_msg}\n{traceback.format_exc()}")
self._cleanup_models()
self.loading_stats["models_loaded"] = False
if progress_callback:
progress_callback(1.0, f"Error: {error_msg}")
return None, None
def reload_models(self, progress_callback: Optional[Callable[[float, str], None]] = None) -> Tuple[
Optional[LoadedModel], Optional[LoadedModel]
]:
logger.info("Reloading models...")
self._cleanup_models()
self.loading_stats["models_loaded"] = False
return self.load_all_models(progress_callback)
@property
def models_ready(self) -> bool:
return self.sam2_predictor is not None or self.matanyone_model is not None
def get_sam2(self):
return self.sam2_predictor.model if self.sam2_predictor is not None else None
def get_matanyone(self):
return self.matanyone_model.model if self.matanyone_model is not None else None
def validate_models(self) -> bool:
try:
ok = False
if self.sam2_predictor is not None:
model = self.sam2_predictor.model
if hasattr(model, "set_image") or hasattr(model, "predict"):
ok = True
if self.matanyone_model is not None:
ok = True
return ok
except Exception as e:
logger.error(f"Model validation failed: {e}")
return False
def get_model_info(self) -> Dict[str, Any]:
info = {
"models_loaded": self.loading_stats["models_loaded"],
"sam2_loaded": self.sam2_predictor is not None,
"matanyone_loaded": self.matanyone_model is not None,
"device": str(self.device),
"loading_stats": self.loading_stats.copy(),
}
if self.sam2_predictor is not None:
info["sam2_model_type"] = type(self.sam2_predictor.model).__name__
info["sam2_metadata"] = self.sam2_predictor.to_dict()
if self.matanyone_model is not None:
info["matanyone_model_type"] = type(self.matanyone_model.model).__name__
info["matanyone_metadata"] = self.matanyone_model.to_dict()
return info
def get_load_summary(self) -> str:
if not self.loading_stats["models_loaded"]:
return "Models not loaded"
sam2_time = self.loading_stats["sam2_load_time"]
matanyone_time = self.loading_stats["matanyone_load_time"]
total_time = self.loading_stats["total_load_time"]
summary = f"Models loaded in {total_time:.1f}s\n"
if self.sam2_predictor:
summary += f"β SAM2: {sam2_time:.1f}s (ID: {self.sam2_predictor.model_id})\n"
else:
summary += "β SAM2: Failed (using fallback)\n"
if self.matanyone_model:
summary += f"β MatAnyOne: {matanyone_time:.1f}s (ID: {self.matanyone_model.model_id})\n"
else:
summary += "β MatAnyOne: Failed (using simple refinement)\n"
summary += f"Device: {self.device}"
return summary
def cleanup(self):
self._cleanup_models()
logger.info("ModelLoader cleanup completed")
# ---------- Internal: SAM2 ----------
def _load_sam2_predictor(self, progress_callback: Optional[Callable[[float, str], None]] = None) -> Optional[LoadedModel]:
"""
Try multiple SAM2 loading strategies: official -> transformers -> dummy fallback.
"""
# Choose model size heuristically
model_size = "large"
try:
if hasattr(self.device_manager, "get_device_memory_gb"):
memory_gb = self.device_manager.get_device_memory_gb()
if memory_gb < 4:
model_size = "tiny"
elif memory_gb < 8:
model_size = "small"
elif memory_gb < 12:
model_size = "base"
logger.info(f"Selected SAM2 {model_size} based on {memory_gb}GB VRAM")
except Exception as e:
logger.warning(f"Could not determine device memory: {e}")
model_size = "tiny"
model_map = {
"tiny": "facebook/sam2.1-hiera-tiny",
"small": "facebook/sam2.1-hiera-small",
"base": "facebook/sam2.1-hiera-base-plus",
"large": "facebook/sam2.1-hiera-large",
}
model_id = model_map.get(model_size, model_map["tiny"])
if progress_callback:
progress_callback(0.3, f"Loading SAM2 ({model_size})...")
methods = [
("official", self._try_load_sam2_official, model_id),
("direct", self._try_load_sam2_direct, model_id),
("manual", self._try_load_sam2_manual, model_id),
]
for name, fn, mid in methods:
try:
logger.info(f"Attempting SAM2 load via {name} method ({mid})...")
result = fn(mid)
if result is not None:
logger.info(f"SAM2 loaded successfully via {name} method")
return result
except Exception as e:
logger.error(f"SAM2 {name} method failed: {e}")
logger.debug(traceback.format_exc())
continue
logger.error("All SAM2 loading methods failed")
return None
def _try_load_sam2_official(self, model_id: str) -> Optional[LoadedModel]:
"""
Official predictor path (Meta's SAM2ImagePredictor).
"""
from sam2.sam2_image_predictor import SAM2ImagePredictor
# Space-specific hub flags
os.environ["HF_HUB_DISABLE_SYMLINKS"] = "1"
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0"
cache_dir = os.path.join(self.checkpoints_dir, "sam2_cache")
os.makedirs(cache_dir, exist_ok=True)
t0 = time.time()
predictor = SAM2ImagePredictor.from_pretrained(
model_id,
cache_dir=cache_dir,
local_files_only=False,
trust_remote_code=True,
)
if hasattr(predictor, "model"):
predictor.model = predictor.model.to(self.device)
t1 = time.time()
return LoadedModel(
model=predictor, model_id=model_id, load_time=t1 - t0, device=str(self.device), framework="sam2"
)
def _try_load_sam2_direct(self, model_id: str) -> Optional[LoadedModel]:
"""
Transformers AutoModel path (best-effort; API may vary).
"""
from transformers import AutoModel, AutoProcessor
t0 = time.time()
model = AutoModel.from_pretrained(
model_id,
trust_remote_code=True,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
).to(self.device)
try:
processor = AutoProcessor.from_pretrained(model_id)
except Exception:
processor = None
t1 = time.time()
class SAM2Wrapper:
def __init__(self, model, processor=None):
self.model = model
self.processor = processor
def set_image(self, image):
self.current_image = image
def predict(self, *args, **kwargs):
return self.model(*args, **kwargs)
wrapped = SAM2Wrapper(model, processor)
return LoadedModel(
model=wrapped,
model_id=model_id,
load_time=t1 - t0,
device=str(self.device),
framework="sam2-transformers",
)
def _try_load_sam2_manual(self, model_id: str) -> Optional[LoadedModel]:
"""
Dummy fallback that won't crash the app.
"""
class DummySAM2:
def __init__(self, device):
self.device = device
self.model = None
def set_image(self, image):
self.current_image = image
def predict(self, point_coords=None, point_labels=None, box=None, **kwargs):
import numpy as np
if hasattr(self, "current_image"):
h, w = self.current_image.shape[:2]
else:
h, w = 512, 512
return {
"masks": np.ones((1, h, w), dtype=np.float32),
"scores": np.array([0.5]),
"logits": np.ones((1, h, w), dtype=np.float32),
}
t0 = time.time()
dummy = DummySAM2(self.device)
t1 = time.time()
logger.warning("Using manual SAM2 fallback (limited functionality)")
return LoadedModel(
model=dummy, model_id=f"{model_id}-fallback", load_time=t1 - t0, device=str(self.device), framework="sam2-fallback"
)
# ---------- Internal: MatAnyOne ----------
def _load_matanyone(self, progress_callback: Optional[Callable[[float, str], None]] = None) -> Optional[LoadedModel]:
"""
Correct MatAnyOne loader using official package API.
"""
if progress_callback:
progress_callback(0.7, "Loading MatAnyOne (InferenceCore)...")
try:
return self._try_load_matanyone_official()
except Exception as e:
logger.error(f"MatAnyOne official loader failed: {e}")
logger.debug(traceback.format_exc())
logger.warning("Falling back to simple MatAnyOne placeholder.")
return self._try_load_matanyone_fallback()
def _try_load_matanyone_official(self) -> Optional[LoadedModel]:
"""
Official MatAnyOne via package's InferenceCore.
IMPORTANT: pass model id POSITIONALLY; do NOT use repo_id= or transformers.
"""
from matanyone import InferenceCore
t0 = time.time()
processor = InferenceCore("PeiqingYang/MatAnyone")
t1 = time.time()
return LoadedModel(
model=processor,
model_id="PeiqingYang/MatAnyone",
load_time=t1 - t0,
device=str(self.device),
framework="matanyone",
)
def _try_load_matanyone_fallback(self) -> Optional[LoadedModel]:
"""
Minimal placeholder that safely passes masks through.
"""
class FallbackMatAnyone:
def __init__(self, device):
self.device = device
def process(self, image, mask):
# Identity pass-through (keeps pipeline alive)
return mask
t0 = time.time()
model = FallbackMatAnyone(self.device)
t1 = time.time()
logger.warning("Using MatAnyOne fallback (limited functionality)")
return LoadedModel(
model=model, model_id="MatAnyone-fallback", load_time=t1 - t0, device=str(self.device), framework="matanyone-fallback"
)
# ---------- Internal: cleanup ----------
def _cleanup_models(self):
if self.sam2_predictor is not None:
del self.sam2_predictor
self.sam2_predictor = None
if self.matanyone_model is not None:
del self.matanyone_model
self.matanyone_model = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
logger.debug("Model cleanup completed")
|