|
|
|
|
|
""" |
|
|
UI Components for BackgroundFX Pro (Hugging Face Spaces, CSP-safe) |
|
|
|
|
|
- Clean, modern layout with tabs |
|
|
- Keeps existing functionality: |
|
|
* Load models |
|
|
* Process video (single-stage / two-stage switch, previews, etc.) |
|
|
* Status panel |
|
|
- Adds lightweight "AI Background" generator (procedural, no heavy deps) |
|
|
- NEW: |
|
|
* Preview of uploaded custom background |
|
|
* Preview of the video's first frame when a video is uploaded |
|
|
* Background style keys aligned with utils.cv_processing.PROFESSIONAL_BACKGROUNDS |
|
|
""" |
|
|
|
|
|
from __future__ import annotations |
|
|
|
|
|
import os |
|
|
import time |
|
|
import random |
|
|
from pathlib import Path |
|
|
from typing import Optional, Tuple, Dict, Any, List |
|
|
|
|
|
import gradio as gr |
|
|
from PIL import Image, ImageFilter, ImageOps |
|
|
import numpy as np |
|
|
import cv2 |
|
|
|
|
|
|
|
|
from core.app import ( |
|
|
load_models_with_validation, |
|
|
process_video_fixed, |
|
|
get_model_status, |
|
|
get_cache_status, |
|
|
PROCESS_CANCELLED, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TMP_DIR = Path("/tmp/bgfx") |
|
|
TMP_DIR.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
|
|
|
def _save_pil(img: Image.Image, stem: str = "gen_bg", ext: str = "png") -> str: |
|
|
ts = int(time.time() * 1000) |
|
|
p = TMP_DIR / f"{stem}_{ts}.{ext}" |
|
|
img.save(p) |
|
|
return str(p) |
|
|
|
|
|
|
|
|
def _pil_from_path(path: str) -> Optional[Image.Image]: |
|
|
try: |
|
|
return Image.open(path).convert("RGB") |
|
|
except Exception: |
|
|
return None |
|
|
|
|
|
|
|
|
def _first_frame(path: str, max_side: int = 960) -> Optional[Image.Image]: |
|
|
"""Extract the first frame of a video for preview.""" |
|
|
try: |
|
|
cap = cv2.VideoCapture(path) |
|
|
ok, frame = cap.read() |
|
|
cap.release() |
|
|
if not ok or frame is None: |
|
|
return None |
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
|
h, w = frame.shape[:2] |
|
|
scale = min(1.0, max_side / max(h, w)) |
|
|
if scale < 1.0: |
|
|
frame = cv2.resize(frame, (int(w * scale), int(h * scale)), interpolation=cv2.INTER_AREA) |
|
|
return Image.fromarray(frame) |
|
|
except Exception: |
|
|
return None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_PALETTES = { |
|
|
"office": [(240, 245, 250), (210, 220, 230), (180, 190, 200)], |
|
|
"studio": [(18, 18, 20), (32, 32, 36), (58, 60, 64)], |
|
|
"sunset": [(255, 183, 77), (255, 138, 101), (244, 143, 177)], |
|
|
"forest": [(46, 125, 50), (102, 187, 106), (165, 214, 167)], |
|
|
"ocean": [(33, 150, 243), (3, 169, 244), (0, 188, 212)], |
|
|
"minimal": [(245, 246, 248), (230, 232, 236), (214, 218, 224)], |
|
|
"warm": [(255, 224, 178), (255, 204, 128), (255, 171, 145)], |
|
|
"cool": [(197, 202, 233), (179, 229, 252), (178, 235, 242)], |
|
|
"royal": [(63, 81, 181), (121, 134, 203), (159, 168, 218)], |
|
|
} |
|
|
|
|
|
def _palette_from_prompt(prompt: str) -> List[tuple]: |
|
|
p = (prompt or "").lower() |
|
|
for key, pal in _PALETTES.items(): |
|
|
if key in p: |
|
|
return pal |
|
|
random.seed(hash(p) % (2**32 - 1)) |
|
|
return [tuple(random.randint(90, 200) for _ in range(3)) for _ in range(3)] |
|
|
|
|
|
|
|
|
def _perlin_like_noise(h: int, w: int, octaves: int = 4) -> np.ndarray: |
|
|
acc = np.zeros((h, w), dtype=np.float32) |
|
|
for o in range(octaves): |
|
|
scale = 2 ** o |
|
|
small = np.random.rand(h // scale + 1, w // scale + 1).astype(np.float32) |
|
|
small = Image.fromarray((small * 255).astype(np.uint8)).resize((w, h), Image.BILINEAR) |
|
|
arr = np.array(small).astype(np.float32) / 255.0 |
|
|
acc += arr / (o + 1) |
|
|
acc = acc / max(1e-6, acc.max()) |
|
|
return acc |
|
|
|
|
|
|
|
|
def _blend_palette(noise: np.ndarray, palette: List[tuple]) -> Image.Image: |
|
|
h, w = noise.shape |
|
|
img = np.zeros((h, w, 3), dtype=np.float32) |
|
|
thresholds = [0.33, 0.66] |
|
|
c0, c1, c2 = [np.array(c, dtype=np.float32) for c in palette] |
|
|
mask0 = noise < thresholds[0] |
|
|
mask1 = (noise >= thresholds[0]) & (noise < thresholds[1]) |
|
|
mask2 = noise >= thresholds[1] |
|
|
img[mask0] = c0 |
|
|
img[mask1] = c1 |
|
|
img[mask2] = c2 |
|
|
img = np.clip(img, 0, 255).astype(np.uint8) |
|
|
return Image.fromarray(img) |
|
|
|
|
|
|
|
|
def generate_ai_background( |
|
|
prompt: str, |
|
|
width: int = 1280, |
|
|
height: int = 720, |
|
|
bokeh: float = 0.0, |
|
|
vignette: float = 0.15, |
|
|
contrast: float = 1.05, |
|
|
) -> Tuple[Image.Image, str]: |
|
|
palette = _palette_from_prompt(prompt) |
|
|
noise = _perlin_like_noise(height, width, octaves=4) |
|
|
img = _blend_palette(noise, palette) |
|
|
|
|
|
if bokeh > 0: |
|
|
img = img.filter(ImageFilter.GaussianBlur(radius=max(0, min(50, bokeh)))) |
|
|
|
|
|
if vignette > 0: |
|
|
y, x = np.ogrid[:height, :width] |
|
|
cx, cy = width / 2, height / 2 |
|
|
r = np.sqrt((x - cx) ** 2 + (y - cy) ** 2) |
|
|
mask = 1 - np.clip(r / (max(width, height) / 1.2), 0, 1) |
|
|
mask = mask ** 2 |
|
|
mask = (mask * (1 - vignette) + (1 - (1 - vignette))).astype(np.float32) |
|
|
base = np.array(img).astype(np.float32) / 255.0 |
|
|
out = np.empty_like(base) |
|
|
for c in range(3): |
|
|
out[..., c] = base[..., c] * mask |
|
|
img = Image.fromarray(np.clip(out * 255, 0, 255).astype(np.uint8)) |
|
|
|
|
|
if contrast != 1.0: |
|
|
img = ImageOps.autocontrast(img, cutoff=1) |
|
|
arr = np.array(img).astype(np.float32) |
|
|
mean = arr.mean(axis=(0, 1), keepdims=True) |
|
|
arr = (arr - mean) * float(contrast) + mean |
|
|
img = Image.fromarray(np.clip(arr, 0, 255).astype(np.uint8)) |
|
|
|
|
|
path = _save_pil(img, stem="ai_bg", ext="png") |
|
|
return img, path |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CSS = """ |
|
|
:root { --radius: 16px; } |
|
|
.gradio-container { max-width: 1080px !important; margin: auto !important; } |
|
|
#hero .prose { font-size: 15px; } |
|
|
.card { border-radius: var(--radius); border: 1px solid rgba(0,0,0,.08); padding: 16px; background: linear-gradient(180deg, rgba(255,255,255,.9), rgba(248,250,252,.9)); box-shadow: 0 10px 30px rgba(0,0,0,.06); } |
|
|
.footer-note { opacity: 0.7; font-size: 12px; } |
|
|
.sm { font-size: 13px; opacity: 0.85; } |
|
|
#statusbox { min-height: 120px; } |
|
|
""" |
|
|
|
|
|
def create_interface() -> gr.Blocks: |
|
|
with gr.Blocks(title="π¬ BackgroundFX Pro", css=CSS, analytics_enabled=False, theme=gr.themes.Soft()) as demo: |
|
|
|
|
|
with gr.Row(elem_id="hero"): |
|
|
gr.Markdown( |
|
|
"## π¬ BackgroundFX Pro\n" |
|
|
"Polished matting & background replacement for video. Runs on Hugging Face Spaces.\n" |
|
|
"Tip: **Load models** before processing for best results." |
|
|
) |
|
|
|
|
|
with gr.Tab("π Quick Start"): |
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
|
|
|
video = gr.Video(label="Upload Video") |
|
|
video_preview = gr.Image(label="Video First Frame (Preview)", interactive=False) |
|
|
|
|
|
|
|
|
bg_style = gr.Dropdown( |
|
|
label="Background Style", |
|
|
choices=[ |
|
|
"minimalist", |
|
|
"office_modern", |
|
|
"studio_blue", |
|
|
"studio_green", |
|
|
"warm_gradient", |
|
|
"tech_dark", |
|
|
], |
|
|
value="minimalist", |
|
|
) |
|
|
custom_bg = gr.File(label="Custom Background (Optional)", file_types=["image"]) |
|
|
custom_bg_preview = gr.Image(label="Custom Background Preview", interactive=False) |
|
|
|
|
|
with gr.Accordion("Advanced", open=False): |
|
|
use_two_stage = gr.Checkbox(label="Use Two-Stage Pipeline", value=False) |
|
|
chroma_preset = gr.Dropdown(label="Chroma Preset", choices=["standard"], value="standard") |
|
|
preview_mask = gr.Checkbox(label="Preview Mask (no audio remix)", value=False) |
|
|
preview_greenscreen = gr.Checkbox(label="Preview Greenscreen (no audio remix)", value=False) |
|
|
|
|
|
with gr.Row(): |
|
|
btn_load = gr.Button("π Load Models", variant="secondary") |
|
|
btn_run = gr.Button("π¬ Process Video", variant="primary") |
|
|
btn_cancel = gr.Button("βΉοΈ Cancel", variant="secondary") |
|
|
|
|
|
with gr.Column(scale=1): |
|
|
out_video = gr.Video(label="Processed Output", interactive=False) |
|
|
statusbox = gr.Textbox(label="Status", lines=8, elem_id="statusbox") |
|
|
with gr.Row(): |
|
|
btn_refresh = gr.Button("π Refresh Status", variant="secondary") |
|
|
btn_clear = gr.Button("π§Ή Clear", variant="secondary") |
|
|
|
|
|
|
|
|
with gr.Tab("π§ AI Background (Lightweight)"): |
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
prompt = gr.Textbox( |
|
|
label="Describe the vibe (e.g., 'modern office', 'soft sunset studio')", |
|
|
value="modern office" |
|
|
) |
|
|
with gr.Row(): |
|
|
gen_width = gr.Slider(640, 1920, value=1280, step=10, label="Width") |
|
|
gen_height = gr.Slider(360, 1080, value=720, step=10, label="Height") |
|
|
with gr.Row(): |
|
|
bokeh = gr.Slider(0, 30, value=8, step=1, label="Bokeh Blur") |
|
|
vignette = gr.Slider(0.0, 0.6, value=0.15, step=0.01, label="Vignette") |
|
|
contrast = gr.Slider(0.8, 1.4, value=1.05, step=0.01, label="Contrast") |
|
|
|
|
|
btn_gen_bg = gr.Button("β¨ Generate Background", variant="primary") |
|
|
|
|
|
with gr.Column(scale=1): |
|
|
gen_preview = gr.Image(label="Generated Background", interactive=False) |
|
|
gen_path = gr.Textbox(label="Saved Path", interactive=False) |
|
|
use_gen_as_custom = gr.Button("π Use As Custom Background", variant="secondary") |
|
|
|
|
|
|
|
|
with gr.Tab("π Status & Settings"): |
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1, elem_classes=["card"]): |
|
|
model_status = gr.JSON(label="Model Status") |
|
|
with gr.Column(scale=1, elem_classes=["card"]): |
|
|
cache_status = gr.JSON(label="Cache / System Status") |
|
|
gr.Markdown("<div class='footer-note'>If models fail to load, fallbacks keep the UI responsive. Check logs for details.</div>") |
|
|
|
|
|
|
|
|
|
|
|
def _cb_load_models() -> str: |
|
|
return load_models_with_validation() |
|
|
|
|
|
|
|
|
def _cb_process( |
|
|
vid: str, |
|
|
style: str, |
|
|
custom_file: dict | None, |
|
|
use_two: bool, |
|
|
chroma: str, |
|
|
prev_mask: bool, |
|
|
prev_green: bool, |
|
|
): |
|
|
if PROCESS_CANCELLED.is_set(): |
|
|
PROCESS_CANCELLED.clear() |
|
|
custom_path = None |
|
|
if isinstance(custom_file, dict) and custom_file.get("name"): |
|
|
|
|
|
custom_path = custom_file["name"] |
|
|
return process_video_fixed( |
|
|
video_path=vid, |
|
|
background_choice=style, |
|
|
custom_background_path=custom_path, |
|
|
progress_callback=None, |
|
|
use_two_stage=use_two, |
|
|
chroma_preset=chroma, |
|
|
preview_mask=prev_mask, |
|
|
preview_greenscreen=prev_green, |
|
|
) |
|
|
|
|
|
|
|
|
def _cb_cancel() -> str: |
|
|
try: |
|
|
PROCESS_CANCELLED.set() |
|
|
return "Cancellation requested." |
|
|
except Exception as e: |
|
|
return f"Cancel failed: {e}" |
|
|
|
|
|
|
|
|
def _cb_status() -> Tuple[Dict[str, Any], Dict[str, Any]]: |
|
|
try: |
|
|
return get_model_status(), get_cache_status() |
|
|
except Exception as e: |
|
|
return {"error": str(e)}, {"error": str(e)} |
|
|
|
|
|
|
|
|
def _cb_clear(): |
|
|
return None, "", None, "", None |
|
|
|
|
|
|
|
|
def _cb_generate_bg(prompt_text: str, w: int, h: int, b: float, v: float, c: float): |
|
|
img, path = generate_ai_background(prompt_text, width=int(w), height=int(h), bokeh=b, vignette=v, contrast=c) |
|
|
return img, path |
|
|
|
|
|
|
|
|
def _cb_use_gen_bg(path_text: str): |
|
|
return ( |
|
|
{"name": path_text, "size": os.path.getsize(path_text)} |
|
|
if path_text and os.path.exists(path_text) else None |
|
|
) |
|
|
|
|
|
|
|
|
def _cb_video_changed(vid_path: str): |
|
|
if not vid_path: |
|
|
return None |
|
|
img = _first_frame(vid_path) |
|
|
return img |
|
|
|
|
|
|
|
|
def _cb_custom_bg_preview(file_obj: dict | None): |
|
|
try: |
|
|
if isinstance(file_obj, dict) and file_obj.get("name") and os.path.exists(file_obj["name"]): |
|
|
pil = _pil_from_path(file_obj["name"]) |
|
|
return pil |
|
|
except Exception: |
|
|
pass |
|
|
return None |
|
|
|
|
|
|
|
|
btn_load.click(_cb_load_models, outputs=statusbox) |
|
|
btn_run.click( |
|
|
_cb_process, |
|
|
inputs=[video, bg_style, custom_bg, use_two_stage, chroma_preset, preview_mask, preview_greenscreen], |
|
|
outputs=[out_video, statusbox], |
|
|
) |
|
|
btn_cancel.click(_cb_cancel, outputs=statusbox) |
|
|
btn_refresh.click(_cb_status, outputs=[model_status, cache_status]) |
|
|
btn_clear.click(_cb_clear, outputs=[out_video, statusbox, gen_preview, gen_path, custom_bg_preview]) |
|
|
|
|
|
btn_gen_bg.click( |
|
|
_cb_generate_bg, |
|
|
inputs=[prompt, gen_width, gen_height, bokeh, vignette, contrast], |
|
|
outputs=[gen_preview, gen_path], |
|
|
) |
|
|
use_gen_as_custom.click(_cb_use_gen_bg, inputs=[gen_path], outputs=[custom_bg]) |
|
|
|
|
|
|
|
|
video.change(_cb_video_changed, inputs=[video], outputs=[video_preview]) |
|
|
custom_bg.change(_cb_custom_bg_preview, inputs=[custom_bg], outputs=[custom_bg_preview]) |
|
|
|
|
|
return demo |
|
|
|