|
|
import os
|
|
|
import cv2
|
|
|
import random
|
|
|
import numpy as np
|
|
|
|
|
|
import torch
|
|
|
import torchvision
|
|
|
|
|
|
IMAGE_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.JPG', '.JPEG', '.PNG')
|
|
|
VIDEO_EXTENSIONS = ('.mp4', '.mov', '.avi', '.MP4', '.MOV', '.AVI')
|
|
|
|
|
|
def read_frame_from_videos(frame_root):
|
|
|
if frame_root.endswith(VIDEO_EXTENSIONS):
|
|
|
video_name = os.path.basename(frame_root)[:-4]
|
|
|
frames, _, info = torchvision.io.read_video(filename=frame_root, pts_unit='sec', output_format='TCHW')
|
|
|
fps = info['video_fps']
|
|
|
else:
|
|
|
video_name = os.path.basename(frame_root)
|
|
|
frames = []
|
|
|
fr_lst = sorted(os.listdir(frame_root))
|
|
|
for fr in fr_lst:
|
|
|
frame = cv2.imread(os.path.join(frame_root, fr))[...,[2,1,0]]
|
|
|
frames.append(frame)
|
|
|
fps = 24
|
|
|
frames = torch.Tensor(np.array(frames)).permute(0, 3, 1, 2).contiguous()
|
|
|
|
|
|
length = frames.shape[0]
|
|
|
|
|
|
return frames, fps, length, video_name
|
|
|
|
|
|
def get_video_paths(input_root):
|
|
|
video_paths = []
|
|
|
for root, _, files in os.walk(input_root):
|
|
|
for file in files:
|
|
|
if file.lower().endswith(VIDEO_EXTENSIONS):
|
|
|
video_paths.append(os.path.join(root, file))
|
|
|
return sorted(video_paths)
|
|
|
|
|
|
def str_to_list(value):
|
|
|
return list(map(int, value.split(',')))
|
|
|
|
|
|
def gen_dilate(alpha, min_kernel_size, max_kernel_size):
|
|
|
kernel_size = random.randint(min_kernel_size, max_kernel_size)
|
|
|
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size,kernel_size))
|
|
|
fg_and_unknown = np.array(np.not_equal(alpha, 0).astype(np.float32))
|
|
|
dilate = cv2.dilate(fg_and_unknown, kernel, iterations=1)*255
|
|
|
return dilate.astype(np.float32)
|
|
|
|
|
|
def gen_erosion(alpha, min_kernel_size, max_kernel_size):
|
|
|
kernel_size = random.randint(min_kernel_size, max_kernel_size)
|
|
|
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size,kernel_size))
|
|
|
fg = np.array(np.equal(alpha, 255).astype(np.float32))
|
|
|
erode = cv2.erode(fg, kernel, iterations=1)*255
|
|
|
return erode.astype(np.float32)
|
|
|
|