MogensR's picture
Update processing/fallback.py
fb93504
#!/usr/bin/env python3
"""
Fallback strategies for BackgroundFX Pro.
Implements robust fallback mechanisms when primary processing fails.
"""
import cv2
import numpy as np
import torch
from typing import Dict, List, Optional, Tuple, Any
from dataclasses import dataclass
from enum import Enum
import logging
import traceback
# ABSOLUTE IMPORTS for Hugging Face Spaces
from utils.logger import setup_logger
from utils.device import DeviceManager
from utils.config import ConfigManager
from core.quality import QualityAnalyzer
logger = setup_logger(__name__)
class FallbackLevel(Enum):
NONE = 0
QUALITY_REDUCTION = 1
METHOD_SWITCH = 2
BASIC_PROCESSING = 3
MINIMAL_PROCESSING = 4
PASSTHROUGH = 5
@dataclass
class FallbackConfig:
max_retries: int = 3
quality_reduction_factor: float = 0.75
min_quality: float = 0.3
enable_caching: bool = True
cache_size: int = 10
timeout_seconds: float = 30.0
gpu_fallback_to_cpu: bool = True
progressive_downscale: bool = True
min_resolution: Tuple[int, int] = (320, 240)
class FallbackStrategy:
def __init__(self, config: Optional[FallbackConfig] = None):
self.config = config or FallbackConfig()
self.device_manager = DeviceManager()
self.quality_analyzer = QualityAnalyzer()
self.cache = {}
self.fallback_history = []
self.current_level = FallbackLevel.NONE
def execute_with_fallback(self, func, *args, **kwargs) -> Dict[str, Any]:
attempt = 0
last_error = None
original_args = args
original_kwargs = kwargs.copy()
while attempt < self.config.max_retries:
try:
logger.info(f"Attempt {attempt + 1}/{self.config.max_retries} for {func.__name__}")
result = func(*args, **kwargs)
self.current_level = FallbackLevel.NONE
return {
'success': True,
'result': result,
'attempts': attempt + 1,
'fallback_level': self.current_level
}
except Exception as e:
last_error = e
logger.warning(f"Attempt {attempt + 1} failed: {str(e)}")
fallback_result = self._apply_fallback(func, e, attempt, original_args, original_kwargs)
if fallback_result['handled']:
args = fallback_result.get('new_args', args)
kwargs = fallback_result.get('new_kwargs', kwargs)
else:
break
attempt += 1
logger.error(f"All attempts failed for {func.__name__}")
return self._final_fallback(func, last_error, original_args)
def _apply_fallback(self, func, error: Exception, attempt: int, original_args: tuple, original_kwargs: dict) -> Dict[str, Any]:
error_type = type(error).__name__
self.fallback_history.append({
'function': func.__name__,
'error': error_type,
'attempt': attempt
})
if 'CUDA' in str(error) or 'GPU' in str(error):
return self._handle_gpu_error(original_kwargs)
elif 'memory' in str(error).lower():
return self._handle_memory_error(original_args, original_kwargs)
elif 'timeout' in str(error).lower():
return self._handle_timeout_error(original_kwargs)
elif 'model' in str(error).lower():
return self._handle_model_error(original_kwargs)
else:
return self._handle_generic_error(attempt, original_kwargs)
def _handle_gpu_error(self, kwargs: dict) -> Dict[str, Any]:
logger.info("GPU error detected, falling back to CPU")
if self.config.gpu_fallback_to_cpu:
self.device_manager.device = torch.device('cpu')
kwargs['device'] = 'cpu'
if 'batch_size' in kwargs:
kwargs['batch_size'] = max(1, kwargs['batch_size'] // 2)
self.current_level = FallbackLevel.METHOD_SWITCH
return {
'handled': True,
'new_kwargs': kwargs
}
return {'handled': False}
def _handle_memory_error(self, args: tuple, kwargs: dict) -> Dict[str, Any]:
logger.info("Memory error detected, reducing quality")
image = None
image_idx = -1
for i, arg in enumerate(args):
if isinstance(arg, np.ndarray) and len(arg.shape) == 3:
image = arg
image_idx = i
break
if image is not None and self.config.progressive_downscale:
h, w = image.shape[:2]
new_h = int(h * self.config.quality_reduction_factor)
new_w = int(w * self.config.quality_reduction_factor)
new_h = max(new_h, self.config.min_resolution[1])
new_w = max(new_w, self.config.min_resolution[0])
if new_h < h or new_w < w:
resized = cv2.resize(image, (new_w, new_h))
args = list(args)
args[image_idx] = resized
self.current_level = FallbackLevel.QUALITY_REDUCTION
return {
'handled': True,
'new_args': tuple(args),
'new_kwargs': kwargs
}
if 'quality' in kwargs:
kwargs['quality'] = max(
self.config.min_quality,
kwargs['quality'] * self.config.quality_reduction_factor
)
return {
'handled': True,
'new_kwargs': kwargs
}
def _handle_timeout_error(self, kwargs: dict) -> Dict[str, Any]:
logger.info("Timeout detected, simplifying processing")
simplifications = {
'use_refinement': False,
'use_temporal': False,
'use_guided_filter': False,
'iterations': 1,
'num_samples': 1
}
for key, value in simplifications.items():
if key in kwargs:
kwargs[key] = value
self.current_level = FallbackLevel.BASIC_PROCESSING
return {
'handled': True,
'new_kwargs': kwargs
}
def _handle_model_error(self, kwargs: dict) -> Dict[str, Any]:
logger.info("Model error detected, using simpler model")
if 'model_type' in kwargs:
model_hierarchy = ['large', 'base', 'small', 'tiny']
current = kwargs.get('model_type', 'base')
if current in model_hierarchy:
idx = model_hierarchy.index(current)
if idx < len(model_hierarchy) - 1:
kwargs['model_type'] = model_hierarchy[idx + 1]
self.current_level = FallbackLevel.METHOD_SWITCH
return {
'handled': True,
'new_kwargs': kwargs
}
kwargs['use_model'] = False
self.current_level = FallbackLevel.BASIC_PROCESSING
return {
'handled': True,
'new_kwargs': kwargs
}
def _handle_generic_error(self, attempt: int, kwargs: dict) -> Dict[str, Any]:
logger.info(f"Generic error, applying degradation level {attempt + 1}")
if attempt == 0:
self.current_level = FallbackLevel.QUALITY_REDUCTION
if 'quality' in kwargs:
kwargs['quality'] *= 0.8
elif attempt == 1:
self.current_level = FallbackLevel.METHOD_SWITCH
kwargs['method'] = 'basic'
else:
self.current_level = FallbackLevel.MINIMAL_PROCESSING
kwargs['skip_refinement'] = True
kwargs['fast_mode'] = True
return {
'handled': True,
'new_kwargs': kwargs
}
def _final_fallback(self, func, error: Exception, original_args: tuple) -> Dict[str, Any]:
logger.error(f"Final fallback for {func.__name__}: {str(error)}")
self.current_level = FallbackLevel.PASSTHROUGH
for arg in original_args:
if isinstance(arg, np.ndarray):
return {
'success': False,
'result': arg,
'fallback_level': self.current_level,
'error': str(error)
}
return {
'success': False,
'result': None,
'fallback_level': self.current_level,
'error': str(error)
}
class ProcessingFallback:
def __init__(self):
self.logger = setup_logger(f"{__name__}.ProcessingFallback")
self.quality_analyzer = QualityAnalyzer()
def basic_segmentation(self, image: np.ndarray) -> np.ndarray:
try:
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = image
mask = np.zeros(gray.shape[:2], np.uint8)
bgd_model = np.zeros((1, 65), np.float64)
fgd_model = np.zeros((1, 65), np.float64)
h, w = gray.shape[:2]
rect = (int(w * 0.1), int(h * 0.1), int(w * 0.8), int(h * 0.8))
cv2.grabCut(image, mask, rect, bgd_model, fgd_model, 5, cv2.GC_INIT_WITH_RECT)
mask2 = np.where((mask == 2) | (mask == 0), 0, 255).astype('uint8')
return mask2
except Exception as e:
self.logger.error(f"Basic segmentation failed: {e}")
return self._center_blob_mask(image.shape[:2])
def _center_blob_mask(self, shape: Tuple[int, int]) -> np.ndarray:
h, w = shape
mask = np.zeros((h, w), dtype=np.uint8)
center = (w // 2, h // 2)
axes = (w // 3, h // 3)
cv2.ellipse(mask, center, axes, 0, 0, 360, 255, -1)
mask = cv2.GaussianBlur(mask, (21, 21), 10)
_, mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
return mask
def basic_matting(self, image: np.ndarray, mask: np.ndarray) -> np.ndarray:
try:
if mask.dtype != np.uint8:
mask = (mask * 255).astype(np.uint8)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
mask = cv2.GaussianBlur(mask, (5, 5), 2)
alpha = mask.astype(np.float32) / 255.0
return alpha
except Exception as e:
self.logger.error(f"Basic matting failed: {e}")
return mask.astype(np.float32) / 255.0
def color_difference_keying(self, image: np.ndarray, key_color: Optional[np.ndarray] = None, threshold: float = 30) -> np.ndarray:
try:
if key_color is None:
h, w = image.shape[:2]
corners = [
image[0:10, 0:10],
image[0:10, w-10:w],
image[h-10:h, 0:10],
image[h-10:h, w-10:w]
]
key_color = np.mean([np.mean(c, axis=(0, 1)) for c in corners], axis=0)
diff = np.sqrt(np.sum((image - key_color) ** 2, axis=2))
mask = (diff > threshold).astype(np.float32)
mask = cv2.GaussianBlur(mask, (5, 5), 2)
return mask
except Exception as e:
self.logger.error(f"Color keying failed: {e}")
return np.ones(image.shape[:2], dtype=np.float32)
def edge_based_segmentation(self, image: np.ndarray) -> np.ndarray:
try:
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = image
edges = cv2.Canny(gray, 50, 150)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
closed = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel, iterations=2)
contours, _ = cv2.findContours(closed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
mask = np.zeros(gray.shape, dtype=np.uint8)
if contours:
largest = max(contours, key=cv2.contourArea)
cv2.drawContours(mask, [largest], -1, 255, -1)
return mask
except Exception as e:
self.logger.error(f"Edge segmentation failed: {e}")
return self._center_blob_mask(image.shape[:2])
def cached_result(self, cache_key: str, fallback_func, *args, **kwargs) -> Any:
if not hasattr(self, '_cache'):
self._cache = {}
if cache_key in self._cache:
self.logger.info(f"Using cached result for {cache_key}")
return self._cache[cache_key]
try:
result = fallback_func(*args, **kwargs)
self._cache[cache_key] = result
if len(self._cache) > 100:
keys = list(self._cache.keys())
for key in keys[:20]:
del self._cache[key]
return result
except Exception as e:
self.logger.error(f"Cached computation failed: {e}")
return None