Rename video_processor.py to api/video_processor.py
Browse files- api/video_processor.py +785 -0
- video_processor.py +0 -1209
api/video_processor.py
ADDED
|
@@ -0,0 +1,785 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Video processing API module for BackgroundFX Pro.
|
| 3 |
+
Wraps CoreVideoProcessor with additional API features for streaming, batching, and real-time processing.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import cv2
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
from typing import Dict, List, Optional, Tuple, Union, Callable, Generator, Any
|
| 10 |
+
from dataclasses import dataclass, field
|
| 11 |
+
from enum import Enum
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
import time
|
| 14 |
+
import threading
|
| 15 |
+
from queue import Queue, Empty
|
| 16 |
+
import tempfile
|
| 17 |
+
import shutil
|
| 18 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 19 |
+
import subprocess
|
| 20 |
+
import json
|
| 21 |
+
import os
|
| 22 |
+
import asyncio
|
| 23 |
+
from datetime import datetime
|
| 24 |
+
|
| 25 |
+
from ..utils.logger import setup_logger
|
| 26 |
+
from ..utils.device import DeviceManager
|
| 27 |
+
from ..utils import TimeEstimator, MemoryMonitor
|
| 28 |
+
from ..core.temporal import TemporalCoherence
|
| 29 |
+
from .pipeline import ProcessingPipeline, PipelineConfig, PipelineResult, ProcessingMode
|
| 30 |
+
|
| 31 |
+
# Import your existing CoreVideoProcessor
|
| 32 |
+
from core_video import CoreVideoProcessor
|
| 33 |
+
|
| 34 |
+
logger = setup_logger(__name__)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class VideoStreamMode(Enum):
|
| 38 |
+
"""Video streaming modes."""
|
| 39 |
+
FILE = "file"
|
| 40 |
+
WEBCAM = "webcam"
|
| 41 |
+
RTSP = "rtsp"
|
| 42 |
+
HTTP = "http"
|
| 43 |
+
VIRTUAL = "virtual"
|
| 44 |
+
SCREEN = "screen"
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class OutputFormat(Enum):
|
| 48 |
+
"""Output format options."""
|
| 49 |
+
MP4 = "mp4"
|
| 50 |
+
AVI = "avi"
|
| 51 |
+
MOV = "mov"
|
| 52 |
+
WEBM = "webm"
|
| 53 |
+
HLS = "hls"
|
| 54 |
+
DASH = "dash"
|
| 55 |
+
FRAMES = "frames"
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
@dataclass
|
| 59 |
+
class StreamConfig:
|
| 60 |
+
"""Configuration for video streaming."""
|
| 61 |
+
# Input configuration
|
| 62 |
+
source: Union[str, int] = 0 # File path, camera index, or URL
|
| 63 |
+
stream_mode: VideoStreamMode = VideoStreamMode.FILE
|
| 64 |
+
|
| 65 |
+
# Output configuration
|
| 66 |
+
output_path: Optional[str] = None
|
| 67 |
+
output_format: OutputFormat = OutputFormat.MP4
|
| 68 |
+
output_codec: str = "h264"
|
| 69 |
+
output_bitrate: str = "5M"
|
| 70 |
+
output_fps: Optional[float] = None
|
| 71 |
+
|
| 72 |
+
# Streaming settings
|
| 73 |
+
buffer_size: int = 30
|
| 74 |
+
chunk_duration: float = 2.0 # For HLS/DASH
|
| 75 |
+
enable_adaptive_bitrate: bool = False
|
| 76 |
+
|
| 77 |
+
# Real-time settings
|
| 78 |
+
enable_preview: bool = False
|
| 79 |
+
preview_scale: float = 0.5
|
| 80 |
+
low_latency: bool = False
|
| 81 |
+
|
| 82 |
+
# Performance
|
| 83 |
+
hardware_acceleration: bool = True
|
| 84 |
+
num_threads: int = 4
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
@dataclass
|
| 88 |
+
class VideoStats:
|
| 89 |
+
"""Enhanced video processing statistics."""
|
| 90 |
+
# Timing
|
| 91 |
+
start_time: float = 0.0
|
| 92 |
+
total_duration: float = 0.0
|
| 93 |
+
processing_fps: float = 0.0
|
| 94 |
+
|
| 95 |
+
# Frame stats
|
| 96 |
+
frames_total: int = 0
|
| 97 |
+
frames_processed: int = 0
|
| 98 |
+
frames_dropped: int = 0
|
| 99 |
+
frames_cached: int = 0
|
| 100 |
+
|
| 101 |
+
# Quality metrics
|
| 102 |
+
avg_quality_score: float = 0.0
|
| 103 |
+
min_quality_score: float = 1.0
|
| 104 |
+
max_quality_score: float = 0.0
|
| 105 |
+
|
| 106 |
+
# Performance
|
| 107 |
+
cpu_usage: float = 0.0
|
| 108 |
+
gpu_usage: float = 0.0
|
| 109 |
+
memory_usage_mb: float = 0.0
|
| 110 |
+
|
| 111 |
+
# Errors
|
| 112 |
+
error_count: int = 0
|
| 113 |
+
warnings: List[str] = field(default_factory=list)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
class VideoProcessorAPI:
|
| 117 |
+
"""
|
| 118 |
+
API wrapper for video processing with streaming and real-time capabilities.
|
| 119 |
+
Extends CoreVideoProcessor with additional features.
|
| 120 |
+
"""
|
| 121 |
+
|
| 122 |
+
def __init__(self, core_processor: Optional[CoreVideoProcessor] = None):
|
| 123 |
+
"""
|
| 124 |
+
Initialize Video Processor API.
|
| 125 |
+
|
| 126 |
+
Args:
|
| 127 |
+
core_processor: Optional existing CoreVideoProcessor instance
|
| 128 |
+
"""
|
| 129 |
+
self.logger = setup_logger(f"{__name__}.VideoProcessorAPI")
|
| 130 |
+
|
| 131 |
+
# Use provided core processor or create pipeline-based one
|
| 132 |
+
self.core_processor = core_processor
|
| 133 |
+
self.pipeline = ProcessingPipeline(PipelineConfig(mode=ProcessingMode.VIDEO))
|
| 134 |
+
|
| 135 |
+
# State management
|
| 136 |
+
self.is_processing = False
|
| 137 |
+
self.is_streaming = False
|
| 138 |
+
self.should_stop = False
|
| 139 |
+
|
| 140 |
+
# Statistics
|
| 141 |
+
self.stats = VideoStats()
|
| 142 |
+
|
| 143 |
+
# Streaming components
|
| 144 |
+
self.input_queue = Queue(maxsize=100)
|
| 145 |
+
self.output_queue = Queue(maxsize=100)
|
| 146 |
+
self.preview_queue = Queue(maxsize=10)
|
| 147 |
+
|
| 148 |
+
# Thread pool
|
| 149 |
+
self.executor = ThreadPoolExecutor(max_workers=8)
|
| 150 |
+
self.stream_thread = None
|
| 151 |
+
self.process_threads = []
|
| 152 |
+
|
| 153 |
+
# FFmpeg process for advanced streaming
|
| 154 |
+
self.ffmpeg_process = None
|
| 155 |
+
|
| 156 |
+
# WebRTC support
|
| 157 |
+
self.webrtc_peers = {}
|
| 158 |
+
|
| 159 |
+
self.logger.info("VideoProcessorAPI initialized")
|
| 160 |
+
|
| 161 |
+
async def process_video_async(self,
|
| 162 |
+
input_path: str,
|
| 163 |
+
output_path: str,
|
| 164 |
+
background: Optional[Union[str, np.ndarray]] = None,
|
| 165 |
+
progress_callback: Optional[Callable] = None) -> VideoStats:
|
| 166 |
+
"""
|
| 167 |
+
Asynchronously process a video file.
|
| 168 |
+
|
| 169 |
+
Args:
|
| 170 |
+
input_path: Path to input video
|
| 171 |
+
output_path: Path to output video
|
| 172 |
+
background: Background image or path
|
| 173 |
+
progress_callback: Progress callback function
|
| 174 |
+
|
| 175 |
+
Returns:
|
| 176 |
+
Processing statistics
|
| 177 |
+
"""
|
| 178 |
+
return await asyncio.get_event_loop().run_in_executor(
|
| 179 |
+
None,
|
| 180 |
+
self.process_video,
|
| 181 |
+
input_path,
|
| 182 |
+
output_path,
|
| 183 |
+
background,
|
| 184 |
+
progress_callback
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
def process_video(self,
|
| 188 |
+
input_path: str,
|
| 189 |
+
output_path: str,
|
| 190 |
+
background: Optional[Union[str, np.ndarray]] = None,
|
| 191 |
+
progress_callback: Optional[Callable] = None) -> VideoStats:
|
| 192 |
+
"""
|
| 193 |
+
Process a video file using either CoreVideoProcessor or Pipeline.
|
| 194 |
+
|
| 195 |
+
Args:
|
| 196 |
+
input_path: Path to input video
|
| 197 |
+
output_path: Path to output video
|
| 198 |
+
background: Background image or path
|
| 199 |
+
progress_callback: Progress callback function
|
| 200 |
+
|
| 201 |
+
Returns:
|
| 202 |
+
Processing statistics
|
| 203 |
+
"""
|
| 204 |
+
self.stats = VideoStats(start_time=time.time())
|
| 205 |
+
self.is_processing = True
|
| 206 |
+
|
| 207 |
+
try:
|
| 208 |
+
# If we have CoreVideoProcessor, use it
|
| 209 |
+
if self.core_processor:
|
| 210 |
+
return self._process_with_core(
|
| 211 |
+
input_path, output_path, background, progress_callback
|
| 212 |
+
)
|
| 213 |
+
else:
|
| 214 |
+
# Use pipeline-based processing
|
| 215 |
+
return self._process_with_pipeline(
|
| 216 |
+
input_path, output_path, background, progress_callback
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
finally:
|
| 220 |
+
self.is_processing = False
|
| 221 |
+
self.stats.total_duration = time.time() - self.stats.start_time
|
| 222 |
+
|
| 223 |
+
def _process_with_pipeline(self,
|
| 224 |
+
input_path: str,
|
| 225 |
+
output_path: str,
|
| 226 |
+
background: Optional[Union[str, np.ndarray]],
|
| 227 |
+
progress_callback: Optional[Callable]) -> VideoStats:
|
| 228 |
+
"""Process video using the Pipeline system."""
|
| 229 |
+
|
| 230 |
+
cap = cv2.VideoCapture(input_path)
|
| 231 |
+
if not cap.isOpened():
|
| 232 |
+
raise ValueError(f"Cannot open video: {input_path}")
|
| 233 |
+
|
| 234 |
+
# Get video properties
|
| 235 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 236 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 237 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 238 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 239 |
+
|
| 240 |
+
self.stats.frames_total = total_frames
|
| 241 |
+
|
| 242 |
+
# Setup output writer
|
| 243 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 244 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 245 |
+
|
| 246 |
+
frame_idx = 0
|
| 247 |
+
|
| 248 |
+
try:
|
| 249 |
+
while True:
|
| 250 |
+
ret, frame = cap.read()
|
| 251 |
+
if not ret:
|
| 252 |
+
break
|
| 253 |
+
|
| 254 |
+
# Process frame through pipeline
|
| 255 |
+
result = self.pipeline.process_image(frame, background)
|
| 256 |
+
|
| 257 |
+
if result.success and result.output_image is not None:
|
| 258 |
+
out.write(result.output_image)
|
| 259 |
+
self.stats.frames_processed += 1
|
| 260 |
+
|
| 261 |
+
# Update quality metrics
|
| 262 |
+
self._update_quality_stats(result.quality_score)
|
| 263 |
+
else:
|
| 264 |
+
# Write original frame on failure
|
| 265 |
+
out.write(frame)
|
| 266 |
+
self.stats.frames_dropped += 1
|
| 267 |
+
|
| 268 |
+
frame_idx += 1
|
| 269 |
+
|
| 270 |
+
# Progress callback
|
| 271 |
+
if progress_callback:
|
| 272 |
+
progress = frame_idx / total_frames
|
| 273 |
+
progress_callback(progress, {
|
| 274 |
+
'current_frame': frame_idx,
|
| 275 |
+
'total_frames': total_frames,
|
| 276 |
+
'fps': self.stats.frames_processed / (time.time() - self.stats.start_time)
|
| 277 |
+
})
|
| 278 |
+
|
| 279 |
+
# Check if should stop
|
| 280 |
+
if self.should_stop:
|
| 281 |
+
break
|
| 282 |
+
|
| 283 |
+
finally:
|
| 284 |
+
cap.release()
|
| 285 |
+
out.release()
|
| 286 |
+
|
| 287 |
+
self.stats.processing_fps = self.stats.frames_processed / (time.time() - self.stats.start_time)
|
| 288 |
+
return self.stats
|
| 289 |
+
|
| 290 |
+
def _process_with_core(self,
|
| 291 |
+
input_path: str,
|
| 292 |
+
output_path: str,
|
| 293 |
+
background: Optional[Union[str, np.ndarray]],
|
| 294 |
+
progress_callback: Optional[Callable]) -> VideoStats:
|
| 295 |
+
"""Process video using CoreVideoProcessor."""
|
| 296 |
+
|
| 297 |
+
# Determine background choice
|
| 298 |
+
if isinstance(background, str):
|
| 299 |
+
if os.path.exists(background):
|
| 300 |
+
bg_choice = "custom"
|
| 301 |
+
custom_bg = background
|
| 302 |
+
else:
|
| 303 |
+
bg_choice = background
|
| 304 |
+
custom_bg = None
|
| 305 |
+
elif isinstance(background, np.ndarray):
|
| 306 |
+
# Save background to temp file
|
| 307 |
+
temp_bg = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
| 308 |
+
cv2.imwrite(temp_bg.name, background)
|
| 309 |
+
bg_choice = "custom"
|
| 310 |
+
custom_bg = temp_bg.name
|
| 311 |
+
else:
|
| 312 |
+
bg_choice = "blur"
|
| 313 |
+
custom_bg = None
|
| 314 |
+
|
| 315 |
+
# Process with CoreVideoProcessor
|
| 316 |
+
output, message = self.core_processor.process_video(
|
| 317 |
+
input_path,
|
| 318 |
+
bg_choice,
|
| 319 |
+
custom_bg,
|
| 320 |
+
progress_callback
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
if output:
|
| 324 |
+
# Move output to desired location
|
| 325 |
+
shutil.move(output, output_path)
|
| 326 |
+
|
| 327 |
+
# Extract stats from core processor
|
| 328 |
+
core_stats = self.core_processor.stats
|
| 329 |
+
self.stats.frames_processed = core_stats.get('successful_frames', 0)
|
| 330 |
+
self.stats.frames_dropped = core_stats.get('failed_frames', 0)
|
| 331 |
+
self.stats.processing_fps = core_stats.get('average_fps', 0)
|
| 332 |
+
|
| 333 |
+
return self.stats
|
| 334 |
+
|
| 335 |
+
def start_stream_processing(self,
|
| 336 |
+
config: StreamConfig,
|
| 337 |
+
background: Optional[Union[str, np.ndarray]] = None) -> bool:
|
| 338 |
+
"""
|
| 339 |
+
Start real-time stream processing.
|
| 340 |
+
|
| 341 |
+
Args:
|
| 342 |
+
config: Stream configuration
|
| 343 |
+
background: Background for replacement
|
| 344 |
+
|
| 345 |
+
Returns:
|
| 346 |
+
True if stream started successfully
|
| 347 |
+
"""
|
| 348 |
+
if self.is_streaming:
|
| 349 |
+
self.logger.warning("Stream already active")
|
| 350 |
+
return False
|
| 351 |
+
|
| 352 |
+
self.is_streaming = True
|
| 353 |
+
self.should_stop = False
|
| 354 |
+
|
| 355 |
+
# Start input stream thread
|
| 356 |
+
self.stream_thread = threading.Thread(
|
| 357 |
+
target=self._stream_input_handler,
|
| 358 |
+
args=(config,)
|
| 359 |
+
)
|
| 360 |
+
self.stream_thread.start()
|
| 361 |
+
|
| 362 |
+
# Start processing threads
|
| 363 |
+
for i in range(config.num_threads):
|
| 364 |
+
thread = threading.Thread(
|
| 365 |
+
target=self._stream_processor,
|
| 366 |
+
args=(background,)
|
| 367 |
+
)
|
| 368 |
+
thread.start()
|
| 369 |
+
self.process_threads.append(thread)
|
| 370 |
+
|
| 371 |
+
# Start output handler
|
| 372 |
+
if config.output_format in [OutputFormat.HLS, OutputFormat.DASH]:
|
| 373 |
+
self._start_adaptive_streaming(config)
|
| 374 |
+
else:
|
| 375 |
+
self._start_output_handler(config)
|
| 376 |
+
|
| 377 |
+
self.logger.info(f"Stream processing started: {config.stream_mode.value}")
|
| 378 |
+
return True
|
| 379 |
+
|
| 380 |
+
def _stream_input_handler(self, config: StreamConfig):
|
| 381 |
+
"""Handle input stream capture."""
|
| 382 |
+
try:
|
| 383 |
+
# Open input stream
|
| 384 |
+
if config.stream_mode == VideoStreamMode.FILE:
|
| 385 |
+
cap = cv2.VideoCapture(config.source)
|
| 386 |
+
elif config.stream_mode == VideoStreamMode.WEBCAM:
|
| 387 |
+
cap = cv2.VideoCapture(int(config.source))
|
| 388 |
+
elif config.stream_mode in [VideoStreamMode.RTSP, VideoStreamMode.HTTP]:
|
| 389 |
+
cap = cv2.VideoCapture(config.source)
|
| 390 |
+
elif config.stream_mode == VideoStreamMode.SCREEN:
|
| 391 |
+
# Screen capture (platform-specific)
|
| 392 |
+
cap = self._setup_screen_capture()
|
| 393 |
+
else:
|
| 394 |
+
raise ValueError(f"Unsupported stream mode: {config.stream_mode}")
|
| 395 |
+
|
| 396 |
+
if not cap.isOpened():
|
| 397 |
+
raise ValueError("Failed to open stream")
|
| 398 |
+
|
| 399 |
+
frame_count = 0
|
| 400 |
+
|
| 401 |
+
while self.is_streaming and not self.should_stop:
|
| 402 |
+
ret, frame = cap.read()
|
| 403 |
+
if not ret:
|
| 404 |
+
if config.stream_mode == VideoStreamMode.FILE:
|
| 405 |
+
# End of file
|
| 406 |
+
break
|
| 407 |
+
else:
|
| 408 |
+
# Retry for live streams
|
| 409 |
+
time.sleep(0.1)
|
| 410 |
+
continue
|
| 411 |
+
|
| 412 |
+
# Add frame to processing queue
|
| 413 |
+
try:
|
| 414 |
+
self.input_queue.put(frame, timeout=0.1)
|
| 415 |
+
frame_count += 1
|
| 416 |
+
except:
|
| 417 |
+
# Queue full, drop frame
|
| 418 |
+
self.stats.frames_dropped += 1
|
| 419 |
+
|
| 420 |
+
# Control frame rate for live streams
|
| 421 |
+
if config.stream_mode != VideoStreamMode.FILE:
|
| 422 |
+
time.sleep(1.0 / 30) # 30 FPS limit
|
| 423 |
+
|
| 424 |
+
cap.release()
|
| 425 |
+
|
| 426 |
+
except Exception as e:
|
| 427 |
+
self.logger.error(f"Stream input handler error: {e}")
|
| 428 |
+
finally:
|
| 429 |
+
self.is_streaming = False
|
| 430 |
+
|
| 431 |
+
def _stream_processor(self, background: Optional[Union[str, np.ndarray]]):
|
| 432 |
+
"""Process frames from input queue."""
|
| 433 |
+
while self.is_streaming or not self.input_queue.empty():
|
| 434 |
+
try:
|
| 435 |
+
frame = self.input_queue.get(timeout=0.5)
|
| 436 |
+
|
| 437 |
+
# Process frame
|
| 438 |
+
result = self.pipeline.process_image(frame, background)
|
| 439 |
+
|
| 440 |
+
if result.success and result.output_image is not None:
|
| 441 |
+
# Add to output queue
|
| 442 |
+
self.output_queue.put(result.output_image)
|
| 443 |
+
|
| 444 |
+
# Update stats
|
| 445 |
+
self.stats.frames_processed += 1
|
| 446 |
+
self._update_quality_stats(result.quality_score)
|
| 447 |
+
|
| 448 |
+
# Add to preview queue if enabled
|
| 449 |
+
if not self.preview_queue.full():
|
| 450 |
+
preview = cv2.resize(result.output_image, None, fx=0.5, fy=0.5)
|
| 451 |
+
try:
|
| 452 |
+
self.preview_queue.put_nowait(preview)
|
| 453 |
+
except:
|
| 454 |
+
pass
|
| 455 |
+
|
| 456 |
+
except Empty:
|
| 457 |
+
continue
|
| 458 |
+
except Exception as e:
|
| 459 |
+
self.logger.error(f"Stream processor error: {e}")
|
| 460 |
+
self.stats.error_count += 1
|
| 461 |
+
|
| 462 |
+
def _start_output_handler(self, config: StreamConfig):
|
| 463 |
+
"""Start output stream handler."""
|
| 464 |
+
output_thread = threading.Thread(
|
| 465 |
+
target=self._output_handler,
|
| 466 |
+
args=(config,)
|
| 467 |
+
)
|
| 468 |
+
output_thread.start()
|
| 469 |
+
self.process_threads.append(output_thread)
|
| 470 |
+
|
| 471 |
+
def _output_handler(self, config: StreamConfig):
|
| 472 |
+
"""Handle output stream writing."""
|
| 473 |
+
try:
|
| 474 |
+
if config.output_format == OutputFormat.FRAMES:
|
| 475 |
+
# Save individual frames
|
| 476 |
+
self._save_frames_output(config)
|
| 477 |
+
else:
|
| 478 |
+
# Video file output
|
| 479 |
+
self._save_video_output(config)
|
| 480 |
+
|
| 481 |
+
except Exception as e:
|
| 482 |
+
self.logger.error(f"Output handler error: {e}")
|
| 483 |
+
|
| 484 |
+
def _save_video_output(self, config: StreamConfig):
|
| 485 |
+
"""Save processed frames to video file."""
|
| 486 |
+
out = None
|
| 487 |
+
frame_count = 0
|
| 488 |
+
|
| 489 |
+
try:
|
| 490 |
+
while self.is_streaming or not self.output_queue.empty():
|
| 491 |
+
try:
|
| 492 |
+
frame = self.output_queue.get(timeout=0.5)
|
| 493 |
+
|
| 494 |
+
# Initialize writer on first frame
|
| 495 |
+
if out is None:
|
| 496 |
+
h, w = frame.shape[:2]
|
| 497 |
+
fps = config.output_fps or 30.0
|
| 498 |
+
|
| 499 |
+
if config.output_format == OutputFormat.MP4:
|
| 500 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 501 |
+
elif config.output_format == OutputFormat.AVI:
|
| 502 |
+
fourcc = cv2.VideoWriter_fourcc(*'XVID')
|
| 503 |
+
else:
|
| 504 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 505 |
+
|
| 506 |
+
out = cv2.VideoWriter(
|
| 507 |
+
config.output_path,
|
| 508 |
+
fourcc,
|
| 509 |
+
fps,
|
| 510 |
+
(w, h)
|
| 511 |
+
)
|
| 512 |
+
|
| 513 |
+
out.write(frame)
|
| 514 |
+
frame_count += 1
|
| 515 |
+
|
| 516 |
+
except Empty:
|
| 517 |
+
continue
|
| 518 |
+
|
| 519 |
+
finally:
|
| 520 |
+
if out:
|
| 521 |
+
out.release()
|
| 522 |
+
self.logger.info(f"Saved {frame_count} frames to {config.output_path}")
|
| 523 |
+
|
| 524 |
+
def _save_frames_output(self, config: StreamConfig):
|
| 525 |
+
"""Save processed frames as individual images."""
|
| 526 |
+
output_dir = Path(config.output_path)
|
| 527 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
| 528 |
+
|
| 529 |
+
frame_count = 0
|
| 530 |
+
|
| 531 |
+
while self.is_streaming or not self.output_queue.empty():
|
| 532 |
+
try:
|
| 533 |
+
frame = self.output_queue.get(timeout=0.5)
|
| 534 |
+
|
| 535 |
+
# Save frame
|
| 536 |
+
frame_path = output_dir / f"frame_{frame_count:06d}.png"
|
| 537 |
+
cv2.imwrite(str(frame_path), frame)
|
| 538 |
+
frame_count += 1
|
| 539 |
+
|
| 540 |
+
except Empty:
|
| 541 |
+
continue
|
| 542 |
+
|
| 543 |
+
def _start_adaptive_streaming(self, config: StreamConfig):
|
| 544 |
+
"""Start HLS or DASH adaptive streaming."""
|
| 545 |
+
try:
|
| 546 |
+
# Prepare FFmpeg command for streaming
|
| 547 |
+
if config.output_format == OutputFormat.HLS:
|
| 548 |
+
self._start_hls_streaming(config)
|
| 549 |
+
elif config.output_format == OutputFormat.DASH:
|
| 550 |
+
self._start_dash_streaming(config)
|
| 551 |
+
|
| 552 |
+
except Exception as e:
|
| 553 |
+
self.logger.error(f"Adaptive streaming setup failed: {e}")
|
| 554 |
+
|
| 555 |
+
def _start_hls_streaming(self, config: StreamConfig):
|
| 556 |
+
"""Start HLS streaming with FFmpeg."""
|
| 557 |
+
output_dir = Path(config.output_path)
|
| 558 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
| 559 |
+
|
| 560 |
+
# FFmpeg command for HLS
|
| 561 |
+
cmd = [
|
| 562 |
+
'ffmpeg',
|
| 563 |
+
'-f', 'rawvideo',
|
| 564 |
+
'-pix_fmt', 'bgr24',
|
| 565 |
+
'-s', '1920x1080', # Will be updated with actual size
|
| 566 |
+
'-r', '30',
|
| 567 |
+
'-i', '-', # Input from pipe
|
| 568 |
+
'-c:v', 'libx264',
|
| 569 |
+
'-preset', 'ultrafast',
|
| 570 |
+
'-tune', 'zerolatency',
|
| 571 |
+
'-f', 'hls',
|
| 572 |
+
'-hls_time', str(config.chunk_duration),
|
| 573 |
+
'-hls_list_size', '10',
|
| 574 |
+
'-hls_flags', 'delete_segments',
|
| 575 |
+
str(output_dir / 'stream.m3u8')
|
| 576 |
+
]
|
| 577 |
+
|
| 578 |
+
# Start FFmpeg process
|
| 579 |
+
self.ffmpeg_process = subprocess.Popen(
|
| 580 |
+
cmd,
|
| 581 |
+
stdin=subprocess.PIPE,
|
| 582 |
+
stdout=subprocess.PIPE,
|
| 583 |
+
stderr=subprocess.PIPE
|
| 584 |
+
)
|
| 585 |
+
|
| 586 |
+
# Start thread to pipe frames to FFmpeg
|
| 587 |
+
ffmpeg_thread = threading.Thread(
|
| 588 |
+
target=self._pipe_to_ffmpeg
|
| 589 |
+
)
|
| 590 |
+
ffmpeg_thread.start()
|
| 591 |
+
self.process_threads.append(ffmpeg_thread)
|
| 592 |
+
|
| 593 |
+
self.logger.info(f"HLS streaming started: {output_dir / 'stream.m3u8'}")
|
| 594 |
+
|
| 595 |
+
def _pipe_to_ffmpeg(self):
|
| 596 |
+
"""Pipe processed frames to FFmpeg."""
|
| 597 |
+
while self.is_streaming or not self.output_queue.empty():
|
| 598 |
+
try:
|
| 599 |
+
frame = self.output_queue.get(timeout=0.5)
|
| 600 |
+
|
| 601 |
+
if self.ffmpeg_process and self.ffmpeg_process.stdin:
|
| 602 |
+
self.ffmpeg_process.stdin.write(frame.tobytes())
|
| 603 |
+
|
| 604 |
+
except Empty:
|
| 605 |
+
continue
|
| 606 |
+
except Exception as e:
|
| 607 |
+
self.logger.error(f"FFmpeg pipe error: {e}")
|
| 608 |
+
break
|
| 609 |
+
|
| 610 |
+
def _setup_screen_capture(self) -> cv2.VideoCapture:
|
| 611 |
+
"""Setup screen capture (platform-specific)."""
|
| 612 |
+
# This would need platform-specific implementation
|
| 613 |
+
# For now, return a dummy capture
|
| 614 |
+
return cv2.VideoCapture(0)
|
| 615 |
+
|
| 616 |
+
def _update_quality_stats(self, quality_score: float):
|
| 617 |
+
"""Update quality statistics."""
|
| 618 |
+
n = self.stats.frames_processed
|
| 619 |
+
if n == 0:
|
| 620 |
+
self.stats.avg_quality_score = quality_score
|
| 621 |
+
else:
|
| 622 |
+
self.stats.avg_quality_score = (
|
| 623 |
+
(self.stats.avg_quality_score * n + quality_score) / (n + 1)
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
self.stats.min_quality_score = min(self.stats.min_quality_score, quality_score)
|
| 627 |
+
self.stats.max_quality_score = max(self.stats.max_quality_score, quality_score)
|
| 628 |
+
|
| 629 |
+
def stop_stream_processing(self):
|
| 630 |
+
"""Stop stream processing."""
|
| 631 |
+
self.should_stop = True
|
| 632 |
+
self.is_streaming = False
|
| 633 |
+
|
| 634 |
+
# Wait for threads to finish
|
| 635 |
+
if self.stream_thread:
|
| 636 |
+
self.stream_thread.join(timeout=5)
|
| 637 |
+
|
| 638 |
+
for thread in self.process_threads:
|
| 639 |
+
thread.join(timeout=5)
|
| 640 |
+
|
| 641 |
+
# Stop FFmpeg if running
|
| 642 |
+
if self.ffmpeg_process:
|
| 643 |
+
self.ffmpeg_process.terminate()
|
| 644 |
+
self.ffmpeg_process.wait(timeout=5)
|
| 645 |
+
|
| 646 |
+
self.logger.info("Stream processing stopped")
|
| 647 |
+
|
| 648 |
+
def get_preview_frame(self) -> Optional[np.ndarray]:
|
| 649 |
+
"""Get a preview frame from the preview queue."""
|
| 650 |
+
try:
|
| 651 |
+
return self.preview_queue.get_nowait()
|
| 652 |
+
except Empty:
|
| 653 |
+
return None
|
| 654 |
+
|
| 655 |
+
def get_stats(self) -> VideoStats:
|
| 656 |
+
"""Get current processing statistics."""
|
| 657 |
+
if self.is_processing or self.is_streaming:
|
| 658 |
+
self.stats.processing_fps = (
|
| 659 |
+
self.stats.frames_processed /
|
| 660 |
+
(time.time() - self.stats.start_time)
|
| 661 |
+
)
|
| 662 |
+
return self.stats
|
| 663 |
+
|
| 664 |
+
def process_video_batch(self,
|
| 665 |
+
input_paths: List[str],
|
| 666 |
+
output_dir: str,
|
| 667 |
+
background: Optional[Union[str, np.ndarray]] = None,
|
| 668 |
+
parallel: bool = True) -> List[VideoStats]:
|
| 669 |
+
"""
|
| 670 |
+
Process multiple videos in batch.
|
| 671 |
+
|
| 672 |
+
Args:
|
| 673 |
+
input_paths: List of input video paths
|
| 674 |
+
output_dir: Output directory
|
| 675 |
+
background: Background for all videos
|
| 676 |
+
parallel: Process in parallel
|
| 677 |
+
|
| 678 |
+
Returns:
|
| 679 |
+
List of processing statistics
|
| 680 |
+
"""
|
| 681 |
+
output_dir = Path(output_dir)
|
| 682 |
+
output_dir.mkdir(parents=True, exist_ok=True)
|
| 683 |
+
|
| 684 |
+
results = []
|
| 685 |
+
|
| 686 |
+
if parallel:
|
| 687 |
+
# Process in parallel
|
| 688 |
+
futures = []
|
| 689 |
+
|
| 690 |
+
for input_path in input_paths:
|
| 691 |
+
input_name = Path(input_path).stem
|
| 692 |
+
output_path = output_dir / f"{input_name}_processed.mp4"
|
| 693 |
+
|
| 694 |
+
future = self.executor.submit(
|
| 695 |
+
self.process_video,
|
| 696 |
+
input_path,
|
| 697 |
+
str(output_path),
|
| 698 |
+
background
|
| 699 |
+
)
|
| 700 |
+
futures.append(future)
|
| 701 |
+
|
| 702 |
+
# Collect results
|
| 703 |
+
for future in as_completed(futures):
|
| 704 |
+
try:
|
| 705 |
+
stats = future.result(timeout=3600) # 1 hour timeout
|
| 706 |
+
results.append(stats)
|
| 707 |
+
except Exception as e:
|
| 708 |
+
self.logger.error(f"Batch processing error: {e}")
|
| 709 |
+
results.append(VideoStats(error_count=1))
|
| 710 |
+
else:
|
| 711 |
+
# Process sequentially
|
| 712 |
+
for input_path in input_paths:
|
| 713 |
+
input_name = Path(input_path).stem
|
| 714 |
+
output_path = output_dir / f"{input_name}_processed.mp4"
|
| 715 |
+
|
| 716 |
+
stats = self.process_video(
|
| 717 |
+
input_path,
|
| 718 |
+
str(output_path),
|
| 719 |
+
background
|
| 720 |
+
)
|
| 721 |
+
results.append(stats)
|
| 722 |
+
|
| 723 |
+
return results
|
| 724 |
+
|
| 725 |
+
def export_to_format(self,
|
| 726 |
+
input_path: str,
|
| 727 |
+
output_path: str,
|
| 728 |
+
format: OutputFormat,
|
| 729 |
+
**kwargs) -> bool:
|
| 730 |
+
"""
|
| 731 |
+
Export processed video to specific format.
|
| 732 |
+
|
| 733 |
+
Args:
|
| 734 |
+
input_path: Input video path
|
| 735 |
+
output_path: Output path
|
| 736 |
+
format: Target format
|
| 737 |
+
**kwargs: Format-specific options
|
| 738 |
+
|
| 739 |
+
Returns:
|
| 740 |
+
True if successful
|
| 741 |
+
"""
|
| 742 |
+
try:
|
| 743 |
+
if format == OutputFormat.WEBM:
|
| 744 |
+
cmd = [
|
| 745 |
+
'ffmpeg', '-i', input_path,
|
| 746 |
+
'-c:v', 'libvpx-vp9',
|
| 747 |
+
'-crf', '30',
|
| 748 |
+
'-b:v', '0',
|
| 749 |
+
output_path
|
| 750 |
+
]
|
| 751 |
+
elif format == OutputFormat.HLS:
|
| 752 |
+
cmd = [
|
| 753 |
+
'ffmpeg', '-i', input_path,
|
| 754 |
+
'-c:v', 'libx264',
|
| 755 |
+
'-hls_time', '10',
|
| 756 |
+
'-hls_list_size', '0',
|
| 757 |
+
'-f', 'hls',
|
| 758 |
+
output_path
|
| 759 |
+
]
|
| 760 |
+
else:
|
| 761 |
+
# Default MP4 conversion
|
| 762 |
+
cmd = [
|
| 763 |
+
'ffmpeg', '-i', input_path,
|
| 764 |
+
'-c:v', 'libx264',
|
| 765 |
+
'-preset', 'medium',
|
| 766 |
+
'-crf', '23',
|
| 767 |
+
output_path
|
| 768 |
+
]
|
| 769 |
+
|
| 770 |
+
result = subprocess.run(cmd, capture_output=True, text=True)
|
| 771 |
+
return result.returncode == 0
|
| 772 |
+
|
| 773 |
+
except Exception as e:
|
| 774 |
+
self.logger.error(f"Export failed: {e}")
|
| 775 |
+
return False
|
| 776 |
+
|
| 777 |
+
def cleanup(self):
|
| 778 |
+
"""Cleanup resources."""
|
| 779 |
+
self.stop_stream_processing()
|
| 780 |
+
self.executor.shutdown(wait=True)
|
| 781 |
+
|
| 782 |
+
if self.core_processor:
|
| 783 |
+
self.core_processor.cleanup()
|
| 784 |
+
|
| 785 |
+
self.logger.info("VideoProcessorAPI cleanup complete")
|
video_processor.py
DELETED
|
@@ -1,1209 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Core Video Processing Module - Enhanced with Temporal Consistency
|
| 3 |
-
VERSION: 2.0-temporal-enhanced
|
| 4 |
-
ROLLBACK: Set USE_TEMPORAL_ENHANCEMENT = False to revert to original behavior
|
| 5 |
-
"""
|
| 6 |
-
|
| 7 |
-
import os
|
| 8 |
-
import cv2
|
| 9 |
-
import numpy as np
|
| 10 |
-
import time
|
| 11 |
-
import logging
|
| 12 |
-
import threading
|
| 13 |
-
from typing import Optional, Tuple, Dict, Any, Callable, List
|
| 14 |
-
from pathlib import Path
|
| 15 |
-
|
| 16 |
-
# Import modular components
|
| 17 |
-
import app_config
|
| 18 |
-
import memory_manager
|
| 19 |
-
import progress_tracker
|
| 20 |
-
import exceptions
|
| 21 |
-
|
| 22 |
-
# Import utilities
|
| 23 |
-
from utilities import (
|
| 24 |
-
segment_person_hq,
|
| 25 |
-
refine_mask_hq,
|
| 26 |
-
replace_background_hq,
|
| 27 |
-
create_professional_background,
|
| 28 |
-
PROFESSIONAL_BACKGROUNDS,
|
| 29 |
-
validate_video_file
|
| 30 |
-
)
|
| 31 |
-
|
| 32 |
-
# ============================================================================
|
| 33 |
-
# VERSION CONTROL AND FEATURE FLAGS - EASY ROLLBACK
|
| 34 |
-
# ============================================================================
|
| 35 |
-
|
| 36 |
-
# ROLLBACK CONTROL: Set to False to use original functions
|
| 37 |
-
USE_TEMPORAL_ENHANCEMENT = True
|
| 38 |
-
USE_HAIR_DETECTION = True
|
| 39 |
-
USE_OPTICAL_FLOW_TRACKING = True
|
| 40 |
-
USE_ADAPTIVE_REFINEMENT = True
|
| 41 |
-
|
| 42 |
-
logger = logging.getLogger(__name__)
|
| 43 |
-
|
| 44 |
-
class CoreVideoProcessor:
|
| 45 |
-
"""
|
| 46 |
-
ENHANCED: Core video processing pipeline with temporal consistency and fine-detail handling
|
| 47 |
-
"""
|
| 48 |
-
|
| 49 |
-
def __init__(self, sam2_predictor: Any, matanyone_model: Any,
|
| 50 |
-
config: app_config.ProcessingConfig, memory_mgr: memory_manager.MemoryManager):
|
| 51 |
-
self.sam2_predictor = sam2_predictor
|
| 52 |
-
self.matanyone_model = matanyone_model
|
| 53 |
-
self.config = config
|
| 54 |
-
self.memory_manager = memory_mgr
|
| 55 |
-
|
| 56 |
-
# Processing state
|
| 57 |
-
self.processing_active = False
|
| 58 |
-
self.last_refined_mask = None
|
| 59 |
-
self.frame_cache = {}
|
| 60 |
-
|
| 61 |
-
# ENHANCED: Temporal consistency state
|
| 62 |
-
self.mask_history = [] # Store recent masks for temporal smoothing
|
| 63 |
-
self.optical_flow_data = None # Previous frame for optical flow
|
| 64 |
-
self.hair_regions_cache = {} # Cache detected hair regions
|
| 65 |
-
self.quality_scores_history = [] # Track quality over time
|
| 66 |
-
|
| 67 |
-
# Statistics
|
| 68 |
-
self.stats = {
|
| 69 |
-
'videos_processed': 0,
|
| 70 |
-
'total_frames_processed': 0,
|
| 71 |
-
'total_processing_time': 0.0,
|
| 72 |
-
'average_fps': 0.0,
|
| 73 |
-
'failed_frames': 0,
|
| 74 |
-
'successful_frames': 0,
|
| 75 |
-
'cache_hits': 0,
|
| 76 |
-
'segmentation_errors': 0,
|
| 77 |
-
'refinement_errors': 0,
|
| 78 |
-
'temporal_corrections': 0, # NEW: Track temporal fixes
|
| 79 |
-
'hair_detections': 0, # NEW: Track hair detection success
|
| 80 |
-
'flow_tracking_failures': 0 # NEW: Track optical flow issues
|
| 81 |
-
}
|
| 82 |
-
|
| 83 |
-
# Quality settings based on config
|
| 84 |
-
self.quality_settings = config.get_quality_settings()
|
| 85 |
-
|
| 86 |
-
logger.info("CoreVideoProcessor initialized")
|
| 87 |
-
logger.info(f"Quality preset: {config.quality_preset}")
|
| 88 |
-
logger.info(f"Quality settings: {self.quality_settings}")
|
| 89 |
-
|
| 90 |
-
if USE_TEMPORAL_ENHANCEMENT:
|
| 91 |
-
logger.info("ENHANCED: Temporal consistency enabled")
|
| 92 |
-
if USE_HAIR_DETECTION:
|
| 93 |
-
logger.info("ENHANCED: Hair detection enabled")
|
| 94 |
-
|
| 95 |
-
def process_video(
|
| 96 |
-
self,
|
| 97 |
-
video_path: str,
|
| 98 |
-
background_choice: str,
|
| 99 |
-
custom_background_path: Optional[str] = None,
|
| 100 |
-
progress_callback: Optional[Callable] = None,
|
| 101 |
-
cancel_event: Optional[threading.Event] = None,
|
| 102 |
-
preview_mask: bool = False,
|
| 103 |
-
preview_greenscreen: bool = False
|
| 104 |
-
) -> Tuple[Optional[str], str]:
|
| 105 |
-
"""
|
| 106 |
-
ENHANCED: Process video with temporal consistency and fine-detail handling
|
| 107 |
-
"""
|
| 108 |
-
if self.processing_active:
|
| 109 |
-
return None, "Processing already in progress"
|
| 110 |
-
|
| 111 |
-
self.processing_active = True
|
| 112 |
-
start_time = time.time()
|
| 113 |
-
|
| 114 |
-
# ENHANCED: Reset temporal state for new video
|
| 115 |
-
self._reset_temporal_state()
|
| 116 |
-
|
| 117 |
-
try:
|
| 118 |
-
# Validate input video
|
| 119 |
-
is_valid, validation_msg = validate_video_file(video_path)
|
| 120 |
-
if not is_valid:
|
| 121 |
-
return None, f"Invalid video file: {validation_msg}"
|
| 122 |
-
|
| 123 |
-
# Open video file
|
| 124 |
-
cap = cv2.VideoCapture(video_path)
|
| 125 |
-
if not cap.isOpened():
|
| 126 |
-
return None, "Could not open video file"
|
| 127 |
-
|
| 128 |
-
# Get video properties
|
| 129 |
-
video_info = self._get_video_info(cap)
|
| 130 |
-
logger.info(f"Processing video: {video_info}")
|
| 131 |
-
|
| 132 |
-
# Check memory requirements
|
| 133 |
-
memory_check = self.memory_manager.can_process_video(
|
| 134 |
-
video_info['width'], video_info['height']
|
| 135 |
-
)
|
| 136 |
-
|
| 137 |
-
if not memory_check['can_process']:
|
| 138 |
-
cap.release()
|
| 139 |
-
return None, f"Insufficient memory: {memory_check['recommendations']}"
|
| 140 |
-
|
| 141 |
-
# Prepare background
|
| 142 |
-
background = self.prepare_background(
|
| 143 |
-
background_choice, custom_background_path,
|
| 144 |
-
video_info['width'], video_info['height']
|
| 145 |
-
)
|
| 146 |
-
|
| 147 |
-
if background is None:
|
| 148 |
-
cap.release()
|
| 149 |
-
return None, "Failed to prepare background"
|
| 150 |
-
|
| 151 |
-
# Setup output video
|
| 152 |
-
output_path = self._setup_output_video(video_info, preview_mask, preview_greenscreen)
|
| 153 |
-
out = self._create_video_writer(output_path, video_info)
|
| 154 |
-
|
| 155 |
-
if out is None:
|
| 156 |
-
cap.release()
|
| 157 |
-
return None, "Could not create output video writer"
|
| 158 |
-
|
| 159 |
-
# ENHANCED: Process video frames with temporal consistency
|
| 160 |
-
result = self._process_video_frames_enhanced(
|
| 161 |
-
cap, out, background, video_info,
|
| 162 |
-
progress_callback, cancel_event,
|
| 163 |
-
preview_mask, preview_greenscreen
|
| 164 |
-
)
|
| 165 |
-
|
| 166 |
-
# Cleanup
|
| 167 |
-
cap.release()
|
| 168 |
-
out.release()
|
| 169 |
-
|
| 170 |
-
if result['success']:
|
| 171 |
-
# Update statistics
|
| 172 |
-
processing_time = time.time() - start_time
|
| 173 |
-
self._update_processing_stats(video_info, processing_time, result)
|
| 174 |
-
|
| 175 |
-
success_msg = (
|
| 176 |
-
f"Processing completed successfully!\n"
|
| 177 |
-
f"Processed: {result['successful_frames']}/{result['total_frames']} frames\n"
|
| 178 |
-
f"Time: {processing_time:.1f}s\n"
|
| 179 |
-
f"Average FPS: {result['total_frames'] / processing_time:.1f}\n"
|
| 180 |
-
f"Temporal corrections: {self.stats['temporal_corrections']}\n"
|
| 181 |
-
f"Hair detections: {self.stats['hair_detections']}\n"
|
| 182 |
-
f"Background: {background_choice}"
|
| 183 |
-
)
|
| 184 |
-
|
| 185 |
-
return output_path, success_msg
|
| 186 |
-
else:
|
| 187 |
-
# Clean up failed output
|
| 188 |
-
try:
|
| 189 |
-
os.remove(output_path)
|
| 190 |
-
except:
|
| 191 |
-
pass
|
| 192 |
-
return None, result['error_message']
|
| 193 |
-
|
| 194 |
-
except Exception as e:
|
| 195 |
-
logger.error(f"Video processing failed: {e}")
|
| 196 |
-
return None, f"Processing failed: {str(e)}"
|
| 197 |
-
|
| 198 |
-
finally:
|
| 199 |
-
self.processing_active = False
|
| 200 |
-
|
| 201 |
-
def _reset_temporal_state(self):
|
| 202 |
-
"""ENHANCED: Reset temporal consistency state"""
|
| 203 |
-
self.mask_history.clear()
|
| 204 |
-
self.optical_flow_data = None
|
| 205 |
-
self.hair_regions_cache.clear()
|
| 206 |
-
self.quality_scores_history.clear()
|
| 207 |
-
self.last_refined_mask = None
|
| 208 |
-
self.stats['temporal_corrections'] = 0
|
| 209 |
-
self.stats['hair_detections'] = 0
|
| 210 |
-
self.stats['flow_tracking_failures'] = 0
|
| 211 |
-
|
| 212 |
-
def _get_video_info(self, cap: cv2.VideoCapture) -> Dict[str, Any]:
|
| 213 |
-
"""Extract comprehensive video information"""
|
| 214 |
-
return {
|
| 215 |
-
'fps': cap.get(cv2.CAP_PROP_FPS),
|
| 216 |
-
'total_frames': int(cap.get(cv2.CAP_PROP_FRAME_COUNT)),
|
| 217 |
-
'width': int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
|
| 218 |
-
'height': int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
|
| 219 |
-
'duration': cap.get(cv2.CAP_PROP_FRAME_COUNT) / cap.get(cv2.CAP_PROP_FPS),
|
| 220 |
-
'codec': int(cap.get(cv2.CAP_PROP_FOURCC))
|
| 221 |
-
}
|
| 222 |
-
|
| 223 |
-
def _setup_output_video(self, video_info: Dict[str, Any],
|
| 224 |
-
preview_mask: bool, preview_greenscreen: bool) -> str:
|
| 225 |
-
"""Setup output video path"""
|
| 226 |
-
timestamp = int(time.time())
|
| 227 |
-
|
| 228 |
-
if preview_mask:
|
| 229 |
-
filename = f"mask_preview_{timestamp}.mp4"
|
| 230 |
-
elif preview_greenscreen:
|
| 231 |
-
filename = f"greenscreen_preview_{timestamp}.mp4"
|
| 232 |
-
else:
|
| 233 |
-
filename = f"processed_video_{timestamp}.mp4"
|
| 234 |
-
|
| 235 |
-
return os.path.join(self.config.temp_dir, filename)
|
| 236 |
-
|
| 237 |
-
def _create_video_writer(self, output_path: str,
|
| 238 |
-
video_info: Dict[str, Any]) -> Optional[cv2.VideoWriter]:
|
| 239 |
-
"""Create video writer with optimal settings"""
|
| 240 |
-
try:
|
| 241 |
-
# Choose codec based on quality settings
|
| 242 |
-
if self.config.output_quality == 'high':
|
| 243 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 244 |
-
else:
|
| 245 |
-
fourcc = cv2.VideoWriter_fourcc(*'XVID')
|
| 246 |
-
|
| 247 |
-
writer = cv2.VideoWriter(
|
| 248 |
-
output_path,
|
| 249 |
-
fourcc,
|
| 250 |
-
video_info['fps'],
|
| 251 |
-
(video_info['width'], video_info['height'])
|
| 252 |
-
)
|
| 253 |
-
|
| 254 |
-
if not writer.isOpened():
|
| 255 |
-
logger.error("Failed to open video writer")
|
| 256 |
-
return None
|
| 257 |
-
|
| 258 |
-
return writer
|
| 259 |
-
|
| 260 |
-
except Exception as e:
|
| 261 |
-
logger.error(f"Error creating video writer: {e}")
|
| 262 |
-
return None
|
| 263 |
-
|
| 264 |
-
def _process_video_frames_enhanced(
|
| 265 |
-
self,
|
| 266 |
-
cap: cv2.VideoCapture,
|
| 267 |
-
out: cv2.VideoWriter,
|
| 268 |
-
background: np.ndarray,
|
| 269 |
-
video_info: Dict[str, Any],
|
| 270 |
-
progress_callback: Optional[Callable],
|
| 271 |
-
cancel_event: Optional[threading.Event],
|
| 272 |
-
preview_mask: bool,
|
| 273 |
-
preview_greenscreen: bool
|
| 274 |
-
) -> Dict[str, Any]:
|
| 275 |
-
"""ENHANCED: Process all video frames with temporal consistency"""
|
| 276 |
-
|
| 277 |
-
# Initialize progress tracking
|
| 278 |
-
prog_tracker = progress_tracker.ProgressTracker(
|
| 279 |
-
total_frames=video_info['total_frames'],
|
| 280 |
-
callback=progress_callback,
|
| 281 |
-
track_performance=True
|
| 282 |
-
)
|
| 283 |
-
|
| 284 |
-
frame_count = 0
|
| 285 |
-
successful_frames = 0
|
| 286 |
-
failed_frames = 0
|
| 287 |
-
|
| 288 |
-
# Reset enhanced state
|
| 289 |
-
self._reset_temporal_state()
|
| 290 |
-
|
| 291 |
-
try:
|
| 292 |
-
prog_tracker.set_stage("Processing frames with temporal enhancement")
|
| 293 |
-
|
| 294 |
-
while True:
|
| 295 |
-
# Check for cancellation
|
| 296 |
-
if cancel_event and cancel_event.is_set():
|
| 297 |
-
return {
|
| 298 |
-
'success': False,
|
| 299 |
-
'error_message': 'Processing cancelled by user',
|
| 300 |
-
'total_frames': frame_count,
|
| 301 |
-
'successful_frames': successful_frames,
|
| 302 |
-
'failed_frames': failed_frames
|
| 303 |
-
}
|
| 304 |
-
|
| 305 |
-
# Read frame
|
| 306 |
-
ret, frame = cap.read()
|
| 307 |
-
if not ret:
|
| 308 |
-
break
|
| 309 |
-
|
| 310 |
-
try:
|
| 311 |
-
# Update progress
|
| 312 |
-
prog_tracker.update(frame_count, "Processing frame with temporal consistency")
|
| 313 |
-
|
| 314 |
-
# ENHANCED: Process frame with temporal consistency
|
| 315 |
-
if USE_TEMPORAL_ENHANCEMENT:
|
| 316 |
-
processed_frame = self._process_single_frame_enhanced(
|
| 317 |
-
frame, background, frame_count,
|
| 318 |
-
preview_mask, preview_greenscreen
|
| 319 |
-
)
|
| 320 |
-
else:
|
| 321 |
-
processed_frame = self._process_single_frame_original(
|
| 322 |
-
frame, background, frame_count,
|
| 323 |
-
preview_mask, preview_greenscreen
|
| 324 |
-
)
|
| 325 |
-
|
| 326 |
-
# Write processed frame
|
| 327 |
-
out.write(processed_frame)
|
| 328 |
-
successful_frames += 1
|
| 329 |
-
|
| 330 |
-
# Memory management
|
| 331 |
-
if frame_count % self.config.memory_cleanup_interval == 0:
|
| 332 |
-
self.memory_manager.auto_cleanup_if_needed()
|
| 333 |
-
|
| 334 |
-
except Exception as frame_error:
|
| 335 |
-
logger.warning(f"Frame {frame_count} processing failed: {frame_error}")
|
| 336 |
-
|
| 337 |
-
# Write original frame as fallback
|
| 338 |
-
out.write(frame)
|
| 339 |
-
failed_frames += 1
|
| 340 |
-
self.stats['failed_frames'] += 1
|
| 341 |
-
|
| 342 |
-
frame_count += 1
|
| 343 |
-
|
| 344 |
-
# Skip frames if configured (for performance)
|
| 345 |
-
if self.config.frame_skip > 1:
|
| 346 |
-
for _ in range(self.config.frame_skip - 1):
|
| 347 |
-
ret, _ = cap.read()
|
| 348 |
-
if not ret:
|
| 349 |
-
break
|
| 350 |
-
frame_count += 1
|
| 351 |
-
|
| 352 |
-
# Finalize progress tracking
|
| 353 |
-
final_stats = prog_tracker.finalize()
|
| 354 |
-
|
| 355 |
-
return {
|
| 356 |
-
'success': successful_frames > 0,
|
| 357 |
-
'error_message': f'No frames processed successfully' if successful_frames == 0 else '',
|
| 358 |
-
'total_frames': frame_count,
|
| 359 |
-
'successful_frames': successful_frames,
|
| 360 |
-
'failed_frames': failed_frames,
|
| 361 |
-
'processing_stats': final_stats
|
| 362 |
-
}
|
| 363 |
-
|
| 364 |
-
except Exception as e:
|
| 365 |
-
logger.error(f"Frame processing loop failed: {e}")
|
| 366 |
-
return {
|
| 367 |
-
'success': False,
|
| 368 |
-
'error_message': f'Frame processing failed: {str(e)}',
|
| 369 |
-
'total_frames': frame_count,
|
| 370 |
-
'successful_frames': successful_frames,
|
| 371 |
-
'failed_frames': failed_frames
|
| 372 |
-
}
|
| 373 |
-
|
| 374 |
-
def _process_single_frame_enhanced(
|
| 375 |
-
self,
|
| 376 |
-
frame: np.ndarray,
|
| 377 |
-
background: np.ndarray,
|
| 378 |
-
frame_number: int,
|
| 379 |
-
preview_mask: bool,
|
| 380 |
-
preview_greenscreen: bool
|
| 381 |
-
) -> np.ndarray:
|
| 382 |
-
"""ENHANCED: Process a single video frame with temporal consistency"""
|
| 383 |
-
|
| 384 |
-
try:
|
| 385 |
-
# Person segmentation
|
| 386 |
-
mask = self._segment_person_enhanced(frame, frame_number)
|
| 387 |
-
|
| 388 |
-
# ENHANCED: Detect hair and fine details
|
| 389 |
-
if USE_HAIR_DETECTION:
|
| 390 |
-
hair_regions = self._detect_hair_regions(frame, mask, frame_number)
|
| 391 |
-
else:
|
| 392 |
-
hair_regions = None
|
| 393 |
-
|
| 394 |
-
# ENHANCED: Apply temporal consistency
|
| 395 |
-
if USE_TEMPORAL_ENHANCEMENT and len(self.mask_history) > 0:
|
| 396 |
-
mask = self._apply_temporal_consistency_enhanced(frame, mask, frame_number)
|
| 397 |
-
|
| 398 |
-
# ENHANCED: Adaptive mask refinement based on frame content
|
| 399 |
-
if USE_ADAPTIVE_REFINEMENT:
|
| 400 |
-
refined_mask = self._adaptive_mask_refinement(frame, mask, frame_number, hair_regions)
|
| 401 |
-
else:
|
| 402 |
-
refined_mask = self._refine_mask_original(frame, mask, frame_number)
|
| 403 |
-
|
| 404 |
-
# Store mask in history for temporal consistency
|
| 405 |
-
self._update_mask_history(refined_mask)
|
| 406 |
-
|
| 407 |
-
# Generate output based on mode
|
| 408 |
-
if preview_mask:
|
| 409 |
-
return self._create_mask_preview_enhanced(frame, refined_mask, hair_regions)
|
| 410 |
-
elif preview_greenscreen:
|
| 411 |
-
return self._create_greenscreen_preview(frame, refined_mask)
|
| 412 |
-
else:
|
| 413 |
-
return self._replace_background_enhanced(frame, refined_mask, background, hair_regions)
|
| 414 |
-
|
| 415 |
-
except Exception as e:
|
| 416 |
-
logger.warning(f"Enhanced single frame processing failed: {e}")
|
| 417 |
-
# Fallback to original processing
|
| 418 |
-
return self._process_single_frame_original(frame, background, frame_number, preview_mask, preview_greenscreen)
|
| 419 |
-
|
| 420 |
-
def _detect_hair_regions(self, frame: np.ndarray, mask: np.ndarray, frame_number: int) -> Optional[np.ndarray]:
|
| 421 |
-
"""ENHANCED: Detect hair and fine detail regions automatically"""
|
| 422 |
-
try:
|
| 423 |
-
# Check cache first
|
| 424 |
-
if frame_number in self.hair_regions_cache:
|
| 425 |
-
self.stats['cache_hits'] += 1
|
| 426 |
-
return self.hair_regions_cache[frame_number]
|
| 427 |
-
|
| 428 |
-
# Convert frame to different color spaces for better hair detection
|
| 429 |
-
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
| 430 |
-
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 431 |
-
|
| 432 |
-
# Method 1: Texture-based hair detection
|
| 433 |
-
# Hair typically has high frequency texture
|
| 434 |
-
laplacian = cv2.Laplacian(gray, cv2.CV_64F)
|
| 435 |
-
texture_strength = np.abs(laplacian)
|
| 436 |
-
|
| 437 |
-
# Method 2: Color-based hair detection
|
| 438 |
-
# Hair is typically in darker hue ranges
|
| 439 |
-
hair_hue_mask = ((hsv[:,:,0] >= 0) & (hsv[:,:,0] <= 30)) | \
|
| 440 |
-
((hsv[:,:,0] >= 150) & (hsv[:,:,0] <= 180))
|
| 441 |
-
hair_value_mask = hsv[:,:,2] < 100 # Darker regions
|
| 442 |
-
|
| 443 |
-
# Combine texture and color information
|
| 444 |
-
hair_probability = np.zeros_like(gray, dtype=np.float32)
|
| 445 |
-
|
| 446 |
-
# High texture regions
|
| 447 |
-
texture_norm = (texture_strength - texture_strength.min()) / (texture_strength.max() - texture_strength.min() + 1e-8)
|
| 448 |
-
hair_probability += texture_norm * 0.6
|
| 449 |
-
|
| 450 |
-
# Color-based probability
|
| 451 |
-
color_prob = (hair_hue_mask.astype(np.float32) * hair_value_mask.astype(np.float32))
|
| 452 |
-
hair_probability += color_prob * 0.4
|
| 453 |
-
|
| 454 |
-
# Only consider regions near the mask boundary (where hair typically is)
|
| 455 |
-
mask_boundary = self._get_mask_boundary_region(mask, boundary_width=20)
|
| 456 |
-
hair_probability *= mask_boundary
|
| 457 |
-
|
| 458 |
-
# Threshold to get hair regions
|
| 459 |
-
hair_threshold = np.percentile(hair_probability[hair_probability > 0], 75)
|
| 460 |
-
hair_regions = (hair_probability > hair_threshold).astype(np.uint8)
|
| 461 |
-
|
| 462 |
-
# Clean up hair regions
|
| 463 |
-
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
|
| 464 |
-
hair_regions = cv2.morphologyEx(hair_regions, cv2.MORPH_CLOSE, kernel)
|
| 465 |
-
|
| 466 |
-
# Cache the result
|
| 467 |
-
self.hair_regions_cache[frame_number] = hair_regions
|
| 468 |
-
|
| 469 |
-
# Update stats if hair was detected
|
| 470 |
-
if np.any(hair_regions):
|
| 471 |
-
self.stats['hair_detections'] += 1
|
| 472 |
-
logger.debug(f"Hair regions detected in frame {frame_number}")
|
| 473 |
-
|
| 474 |
-
return hair_regions
|
| 475 |
-
|
| 476 |
-
except Exception as e:
|
| 477 |
-
logger.warning(f"Hair detection failed for frame {frame_number}: {e}")
|
| 478 |
-
return None
|
| 479 |
-
|
| 480 |
-
def _get_mask_boundary_region(self, mask: np.ndarray, boundary_width: int = 20) -> np.ndarray:
|
| 481 |
-
"""Get region around mask boundary where hair/fine details are likely"""
|
| 482 |
-
try:
|
| 483 |
-
# Create dilated and eroded versions of mask
|
| 484 |
-
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (boundary_width, boundary_width))
|
| 485 |
-
dilated = cv2.dilate(mask, kernel, iterations=1)
|
| 486 |
-
eroded = cv2.erode(mask, kernel, iterations=1)
|
| 487 |
-
|
| 488 |
-
# Boundary region is dilated minus eroded
|
| 489 |
-
boundary_region = ((dilated > 0) & (eroded == 0)).astype(np.float32)
|
| 490 |
-
|
| 491 |
-
return boundary_region
|
| 492 |
-
|
| 493 |
-
except Exception as e:
|
| 494 |
-
logger.warning(f"Boundary region detection failed: {e}")
|
| 495 |
-
return np.ones_like(mask, dtype=np.float32)
|
| 496 |
-
|
| 497 |
-
def _apply_temporal_consistency_enhanced(self, frame: np.ndarray, current_mask: np.ndarray, frame_number: int) -> np.ndarray:
|
| 498 |
-
"""ENHANCED: Apply temporal consistency using optical flow and history"""
|
| 499 |
-
try:
|
| 500 |
-
if len(self.mask_history) == 0:
|
| 501 |
-
return current_mask
|
| 502 |
-
|
| 503 |
-
previous_mask = self.mask_history[-1]
|
| 504 |
-
|
| 505 |
-
# Method 1: Optical flow-based consistency
|
| 506 |
-
if USE_OPTICAL_FLOW_TRACKING and self.optical_flow_data is not None:
|
| 507 |
-
try:
|
| 508 |
-
flow_corrected_mask = self._apply_optical_flow_consistency(
|
| 509 |
-
frame, current_mask, previous_mask
|
| 510 |
-
)
|
| 511 |
-
|
| 512 |
-
# Blend flow-corrected with current mask
|
| 513 |
-
alpha = 0.7 # Weight for current mask
|
| 514 |
-
beta = 0.3 # Weight for flow-corrected mask
|
| 515 |
-
|
| 516 |
-
blended_mask = cv2.addWeighted(
|
| 517 |
-
current_mask.astype(np.float32), alpha,
|
| 518 |
-
flow_corrected_mask.astype(np.float32), beta, 0
|
| 519 |
-
).astype(np.uint8)
|
| 520 |
-
|
| 521 |
-
self.stats['temporal_corrections'] += 1
|
| 522 |
-
|
| 523 |
-
except Exception as e:
|
| 524 |
-
logger.debug(f"Optical flow consistency failed: {e}")
|
| 525 |
-
self.stats['flow_tracking_failures'] += 1
|
| 526 |
-
blended_mask = current_mask
|
| 527 |
-
else:
|
| 528 |
-
blended_mask = current_mask
|
| 529 |
-
|
| 530 |
-
# Method 2: Multi-frame temporal smoothing
|
| 531 |
-
if len(self.mask_history) >= 3:
|
| 532 |
-
# Use weighted average of recent masks
|
| 533 |
-
weights = [0.5, 0.3, 0.2] # Current, previous, before previous
|
| 534 |
-
masks_to_blend = [blended_mask] + self.mask_history[-2:]
|
| 535 |
-
|
| 536 |
-
temporal_mask = np.zeros_like(blended_mask, dtype=np.float32)
|
| 537 |
-
for mask, weight in zip(masks_to_blend, weights):
|
| 538 |
-
temporal_mask += mask.astype(np.float32) * weight
|
| 539 |
-
|
| 540 |
-
blended_mask = np.clip(temporal_mask, 0, 255).astype(np.uint8)
|
| 541 |
-
|
| 542 |
-
# Method 3: Edge-aware temporal filtering
|
| 543 |
-
blended_mask = self._temporal_edge_filtering(frame, blended_mask, current_mask)
|
| 544 |
-
|
| 545 |
-
return blended_mask
|
| 546 |
-
|
| 547 |
-
except Exception as e:
|
| 548 |
-
logger.warning(f"Temporal consistency failed: {e}")
|
| 549 |
-
return current_mask
|
| 550 |
-
|
| 551 |
-
def _apply_optical_flow_consistency(self, current_frame: np.ndarray,
|
| 552 |
-
current_mask: np.ndarray, previous_mask: np.ndarray) -> np.ndarray:
|
| 553 |
-
"""Apply optical flow to warp previous mask to current frame"""
|
| 554 |
-
try:
|
| 555 |
-
# Convert frames to grayscale for optical flow
|
| 556 |
-
current_gray = cv2.cvtColor(current_frame, cv2.COLOR_BGR2GRAY)
|
| 557 |
-
previous_gray = self.optical_flow_data
|
| 558 |
-
|
| 559 |
-
# Calculate dense optical flow
|
| 560 |
-
flow = cv2.calcOpticalFlowPyrLK(previous_gray, current_gray, None, None)
|
| 561 |
-
|
| 562 |
-
# Warp previous mask using optical flow
|
| 563 |
-
h, w = previous_mask.shape
|
| 564 |
-
flow_map = np.zeros((h, w, 2), dtype=np.float32)
|
| 565 |
-
|
| 566 |
-
# Create flow field
|
| 567 |
-
y_coords, x_coords = np.mgrid[0:h, 0:w]
|
| 568 |
-
flow_map[:, :, 0] = x_coords + flow[0] if flow[0] is not None else x_coords
|
| 569 |
-
flow_map[:, :, 1] = y_coords + flow[1] if flow[1] is not None else y_coords
|
| 570 |
-
|
| 571 |
-
# Warp previous mask
|
| 572 |
-
warped_mask = cv2.remap(previous_mask, flow_map, None, cv2.INTER_LINEAR)
|
| 573 |
-
|
| 574 |
-
return warped_mask
|
| 575 |
-
|
| 576 |
-
except Exception as e:
|
| 577 |
-
logger.debug(f"Optical flow warping failed: {e}")
|
| 578 |
-
return previous_mask
|
| 579 |
-
|
| 580 |
-
def _temporal_edge_filtering(self, frame: np.ndarray, blended_mask: np.ndarray, current_mask: np.ndarray) -> np.ndarray:
|
| 581 |
-
"""Apply edge-aware temporal filtering"""
|
| 582 |
-
try:
|
| 583 |
-
# Detect edges in current frame
|
| 584 |
-
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 585 |
-
edges = cv2.Canny(gray, 50, 150)
|
| 586 |
-
|
| 587 |
-
# In edge regions, favor the current mask (more responsive)
|
| 588 |
-
# In smooth regions, favor the blended mask (more stable)
|
| 589 |
-
edge_weight = cv2.GaussianBlur(edges.astype(np.float32), (5, 5), 1.0) / 255.0
|
| 590 |
-
|
| 591 |
-
filtered_mask = (current_mask.astype(np.float32) * edge_weight +
|
| 592 |
-
blended_mask.astype(np.float32) * (1 - edge_weight))
|
| 593 |
-
|
| 594 |
-
return np.clip(filtered_mask, 0, 255).astype(np.uint8)
|
| 595 |
-
|
| 596 |
-
except Exception as e:
|
| 597 |
-
logger.warning(f"Temporal edge filtering failed: {e}")
|
| 598 |
-
return blended_mask
|
| 599 |
-
|
| 600 |
-
def _adaptive_mask_refinement(self, frame: np.ndarray, mask: np.ndarray,
|
| 601 |
-
frame_number: int, hair_regions: Optional[np.ndarray]) -> np.ndarray:
|
| 602 |
-
"""ENHANCED: Adaptive mask refinement based on content analysis"""
|
| 603 |
-
try:
|
| 604 |
-
# Determine refinement strategy based on frame content
|
| 605 |
-
refinement_needed = self._assess_refinement_needs(frame, mask, hair_regions)
|
| 606 |
-
|
| 607 |
-
if refinement_needed['hair_refinement'] and hair_regions is not None:
|
| 608 |
-
# Special handling for hair regions
|
| 609 |
-
mask = self._refine_hair_regions(frame, mask, hair_regions)
|
| 610 |
-
|
| 611 |
-
if refinement_needed['edge_refinement']:
|
| 612 |
-
# Enhanced edge refinement
|
| 613 |
-
mask = self._enhanced_edge_refinement(frame, mask)
|
| 614 |
-
|
| 615 |
-
if refinement_needed['temporal_refinement']:
|
| 616 |
-
# Apply temporal-aware refinement
|
| 617 |
-
mask = self._temporal_aware_refinement(frame, mask, frame_number)
|
| 618 |
-
|
| 619 |
-
# Standard refinement if needed
|
| 620 |
-
if self._should_refine_mask(frame_number):
|
| 621 |
-
if self.matanyone_model is not None and self.quality_settings.get('edge_refinement', True):
|
| 622 |
-
mask = refine_mask_hq(frame, mask, self.matanyone_model)
|
| 623 |
-
else:
|
| 624 |
-
mask = self._fallback_mask_refinement_enhanced(mask)
|
| 625 |
-
|
| 626 |
-
return mask
|
| 627 |
-
|
| 628 |
-
except Exception as e:
|
| 629 |
-
logger.warning(f"Adaptive mask refinement failed: {e}")
|
| 630 |
-
return self._refine_mask_original(frame, mask, frame_number)
|
| 631 |
-
|
| 632 |
-
def _assess_refinement_needs(self, frame: np.ndarray, mask: np.ndarray,
|
| 633 |
-
hair_regions: Optional[np.ndarray]) -> Dict[str, bool]:
|
| 634 |
-
"""Assess what type of refinement is needed for this frame"""
|
| 635 |
-
try:
|
| 636 |
-
needs = {
|
| 637 |
-
'hair_refinement': False,
|
| 638 |
-
'edge_refinement': False,
|
| 639 |
-
'temporal_refinement': False
|
| 640 |
-
}
|
| 641 |
-
|
| 642 |
-
# Check if hair refinement is needed
|
| 643 |
-
if hair_regions is not None and np.any(hair_regions):
|
| 644 |
-
needs['hair_refinement'] = True
|
| 645 |
-
|
| 646 |
-
# Check edge quality
|
| 647 |
-
edges = cv2.Canny(mask, 50, 150)
|
| 648 |
-
edge_density = np.sum(edges > 0) / (mask.shape[0] * mask.shape[1])
|
| 649 |
-
if edge_density > 0.1: # High edge density suggests rough boundaries
|
| 650 |
-
needs['edge_refinement'] = True
|
| 651 |
-
|
| 652 |
-
# Check temporal consistency needs
|
| 653 |
-
if len(self.mask_history) > 0:
|
| 654 |
-
prev_mask = self.mask_history[-1]
|
| 655 |
-
diff = cv2.absdiff(mask, prev_mask)
|
| 656 |
-
change_ratio = np.sum(diff > 50) / (mask.shape[0] * mask.shape[1])
|
| 657 |
-
if change_ratio > 0.15: # High change suggests temporal inconsistency
|
| 658 |
-
needs['temporal_refinement'] = True
|
| 659 |
-
|
| 660 |
-
return needs
|
| 661 |
-
|
| 662 |
-
except Exception as e:
|
| 663 |
-
logger.warning(f"Refinement assessment failed: {e}")
|
| 664 |
-
return {'hair_refinement': False, 'edge_refinement': True, 'temporal_refinement': False}
|
| 665 |
-
|
| 666 |
-
def _refine_hair_regions(self, frame: np.ndarray, mask: np.ndarray, hair_regions: np.ndarray) -> np.ndarray:
|
| 667 |
-
"""Special refinement for hair and fine detail regions"""
|
| 668 |
-
try:
|
| 669 |
-
# Create a more aggressive mask for hair regions
|
| 670 |
-
hair_mask = hair_regions > 0
|
| 671 |
-
|
| 672 |
-
# Use different thresholding for hair areas
|
| 673 |
-
refined_mask = mask.copy()
|
| 674 |
-
|
| 675 |
-
# In hair regions, use lower threshold (include more pixels)
|
| 676 |
-
hair_area_values = mask[hair_mask]
|
| 677 |
-
if len(hair_area_values) > 0:
|
| 678 |
-
hair_threshold = max(100, np.percentile(hair_area_values, 25)) # Lower threshold for hair
|
| 679 |
-
refined_mask[hair_mask] = np.where(mask[hair_mask] > hair_threshold, 255, 0)
|
| 680 |
-
|
| 681 |
-
# Apply morphological closing to connect hair strands
|
| 682 |
-
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
|
| 683 |
-
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel)
|
| 684 |
-
|
| 685 |
-
return refined_mask
|
| 686 |
-
|
| 687 |
-
except Exception as e:
|
| 688 |
-
logger.warning(f"Hair region refinement failed: {e}")
|
| 689 |
-
return mask
|
| 690 |
-
|
| 691 |
-
def _enhanced_edge_refinement(self, frame: np.ndarray, mask: np.ndarray) -> np.ndarray:
|
| 692 |
-
"""Enhanced edge refinement using image gradients"""
|
| 693 |
-
try:
|
| 694 |
-
# Use bilateral filter to preserve edges while smoothing
|
| 695 |
-
refined = cv2.bilateralFilter(mask, 9, 75, 75)
|
| 696 |
-
|
| 697 |
-
# Edge-guided smoothing
|
| 698 |
-
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 699 |
-
edges = cv2.Canny(gray, 50, 150)
|
| 700 |
-
|
| 701 |
-
# In edge areas, preserve original mask more
|
| 702 |
-
edge_weight = cv2.GaussianBlur(edges.astype(np.float32), (3, 3), 1.0) / 255.0
|
| 703 |
-
edge_weight = np.clip(edge_weight * 2, 0, 1) # Amplify edge influence
|
| 704 |
-
|
| 705 |
-
final_mask = (mask.astype(np.float32) * edge_weight +
|
| 706 |
-
refined.astype(np.float32) * (1 - edge_weight))
|
| 707 |
-
|
| 708 |
-
return np.clip(final_mask, 0, 255).astype(np.uint8)
|
| 709 |
-
|
| 710 |
-
except Exception as e:
|
| 711 |
-
logger.warning(f"Enhanced edge refinement failed: {e}")
|
| 712 |
-
return mask
|
| 713 |
-
|
| 714 |
-
def _temporal_aware_refinement(self, frame: np.ndarray, mask: np.ndarray, frame_number: int) -> np.ndarray:
|
| 715 |
-
"""Temporal-aware refinement considering motion and stability"""
|
| 716 |
-
try:
|
| 717 |
-
if len(self.mask_history) == 0:
|
| 718 |
-
return mask
|
| 719 |
-
|
| 720 |
-
# Calculate motion between frames
|
| 721 |
-
if self.optical_flow_data is not None:
|
| 722 |
-
current_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 723 |
-
motion_magnitude = cv2.absdiff(current_gray, self.optical_flow_data)
|
| 724 |
-
motion_mask = motion_magnitude > 10 # Areas with motion
|
| 725 |
-
|
| 726 |
-
# In high-motion areas, trust current mask more
|
| 727 |
-
# In low-motion areas, use temporal smoothing
|
| 728 |
-
prev_mask = self.mask_history[-1]
|
| 729 |
-
|
| 730 |
-
motion_weight = cv2.GaussianBlur(motion_mask.astype(np.float32), (5, 5), 1.0)
|
| 731 |
-
motion_weight = np.clip(motion_weight, 0.3, 1.0) # Don't completely ignore temporal info
|
| 732 |
-
|
| 733 |
-
temporal_mask = (mask.astype(np.float32) * motion_weight +
|
| 734 |
-
prev_mask.astype(np.float32) * (1 - motion_weight))
|
| 735 |
-
|
| 736 |
-
return np.clip(temporal_mask, 0, 255).astype(np.uint8)
|
| 737 |
-
|
| 738 |
-
return mask
|
| 739 |
-
|
| 740 |
-
except Exception as e:
|
| 741 |
-
logger.warning(f"Temporal-aware refinement failed: {e}")
|
| 742 |
-
return mask
|
| 743 |
-
|
| 744 |
-
def _update_mask_history(self, mask: np.ndarray):
|
| 745 |
-
"""Update mask history for temporal consistency"""
|
| 746 |
-
self.mask_history.append(mask.copy())
|
| 747 |
-
|
| 748 |
-
# Keep only recent history (limit memory usage)
|
| 749 |
-
max_history = 5
|
| 750 |
-
if len(self.mask_history) > max_history:
|
| 751 |
-
self.mask_history.pop(0)
|
| 752 |
-
|
| 753 |
-
def _create_mask_preview_enhanced(self, frame: np.ndarray, mask: np.ndarray,
|
| 754 |
-
hair_regions: Optional[np.ndarray]) -> np.ndarray:
|
| 755 |
-
"""ENHANCED: Create mask visualization with hair regions highlighted"""
|
| 756 |
-
try:
|
| 757 |
-
# Create colored mask overlay
|
| 758 |
-
mask_colored = np.zeros_like(frame)
|
| 759 |
-
mask_colored[:, :, 1] = mask # Green channel for person
|
| 760 |
-
|
| 761 |
-
# Highlight hair regions in blue if available
|
| 762 |
-
if hair_regions is not None:
|
| 763 |
-
mask_colored[:, :, 2] = np.maximum(mask_colored[:, :, 2], hair_regions * 255)
|
| 764 |
-
|
| 765 |
-
# Blend with original frame
|
| 766 |
-
alpha = 0.6
|
| 767 |
-
preview = cv2.addWeighted(frame, 1-alpha, mask_colored, alpha, 0)
|
| 768 |
-
|
| 769 |
-
return preview
|
| 770 |
-
|
| 771 |
-
except Exception as e:
|
| 772 |
-
logger.warning(f"Enhanced mask preview creation failed: {e}")
|
| 773 |
-
return self._create_mask_preview_original(frame, mask)
|
| 774 |
-
|
| 775 |
-
def _replace_background_enhanced(self, frame: np.ndarray, mask: np.ndarray,
|
| 776 |
-
background: np.ndarray, hair_regions: Optional[np.ndarray]) -> np.ndarray:
|
| 777 |
-
"""ENHANCED: Replace background with special handling for hair regions"""
|
| 778 |
-
try:
|
| 779 |
-
# Standard background replacement
|
| 780 |
-
result = replace_background_hq(frame, mask, background)
|
| 781 |
-
|
| 782 |
-
# If hair regions detected, apply additional processing
|
| 783 |
-
if hair_regions is not None and np.any(hair_regions):
|
| 784 |
-
result = self._enhance_hair_compositing(frame, mask, background, hair_regions, result)
|
| 785 |
-
|
| 786 |
-
return result
|
| 787 |
-
|
| 788 |
-
except Exception as e:
|
| 789 |
-
logger.warning(f"Enhanced background replacement failed: {e}")
|
| 790 |
-
return replace_background_hq(frame, mask, background)
|
| 791 |
-
|
| 792 |
-
def _enhance_hair_compositing(self, frame: np.ndarray, mask: np.ndarray,
|
| 793 |
-
background: np.ndarray, hair_regions: np.ndarray,
|
| 794 |
-
initial_result: np.ndarray) -> np.ndarray:
|
| 795 |
-
"""Enhanced compositing specifically for hair regions"""
|
| 796 |
-
try:
|
| 797 |
-
# In hair regions, use softer alpha blending
|
| 798 |
-
hair_mask = hair_regions > 0
|
| 799 |
-
|
| 800 |
-
if np.any(hair_mask):
|
| 801 |
-
# Create soft alpha for hair regions
|
| 802 |
-
hair_alpha = cv2.GaussianBlur((hair_regions * mask / 255.0).astype(np.float32), (3, 3), 1.0)
|
| 803 |
-
hair_alpha = np.clip(hair_alpha, 0, 1)
|
| 804 |
-
|
| 805 |
-
# Apply softer blending only in hair regions
|
| 806 |
-
for c in range(3):
|
| 807 |
-
channel_blend = (frame[:, :, c].astype(np.float32) * hair_alpha +
|
| 808 |
-
background[:, :, c].astype(np.float32) * (1 - hair_alpha))
|
| 809 |
-
|
| 810 |
-
initial_result[:, :, c] = np.where(
|
| 811 |
-
hair_mask,
|
| 812 |
-
np.clip(channel_blend, 0, 255).astype(np.uint8),
|
| 813 |
-
initial_result[:, :, c]
|
| 814 |
-
)
|
| 815 |
-
|
| 816 |
-
return initial_result
|
| 817 |
-
|
| 818 |
-
except Exception as e:
|
| 819 |
-
logger.warning(f"Hair compositing enhancement failed: {e}")
|
| 820 |
-
return initial_result
|
| 821 |
-
|
| 822 |
-
# ============================================================================
|
| 823 |
-
# ORIGINAL FUNCTIONS PRESERVED FOR ROLLBACK
|
| 824 |
-
# ============================================================================
|
| 825 |
-
|
| 826 |
-
def _process_single_frame_original(
|
| 827 |
-
self,
|
| 828 |
-
frame: np.ndarray,
|
| 829 |
-
background: np.ndarray,
|
| 830 |
-
frame_number: int,
|
| 831 |
-
preview_mask: bool,
|
| 832 |
-
preview_greenscreen: bool
|
| 833 |
-
) -> np.ndarray:
|
| 834 |
-
"""ORIGINAL: Process a single video frame (preserved for rollback)"""
|
| 835 |
-
|
| 836 |
-
try:
|
| 837 |
-
# Person segmentation
|
| 838 |
-
mask = self._segment_person(frame, frame_number)
|
| 839 |
-
|
| 840 |
-
# Mask refinement (keyframe-based for performance)
|
| 841 |
-
if self._should_refine_mask(frame_number):
|
| 842 |
-
refined_mask = self._refine_mask_original(frame, mask, frame_number)
|
| 843 |
-
self.last_refined_mask = refined_mask.copy()
|
| 844 |
-
else:
|
| 845 |
-
# Use temporal consistency with previous refined mask
|
| 846 |
-
refined_mask = self._apply_temporal_consistency_original(mask, frame_number)
|
| 847 |
-
|
| 848 |
-
# Generate output based on mode
|
| 849 |
-
if preview_mask:
|
| 850 |
-
return self._create_mask_preview_original(frame, refined_mask)
|
| 851 |
-
elif preview_greenscreen:
|
| 852 |
-
return self._create_greenscreen_preview(frame, refined_mask)
|
| 853 |
-
else:
|
| 854 |
-
return self._replace_background(frame, refined_mask, background)
|
| 855 |
-
|
| 856 |
-
except Exception as e:
|
| 857 |
-
logger.warning(f"Single frame processing failed: {e}")
|
| 858 |
-
raise
|
| 859 |
-
|
| 860 |
-
def _segment_person(self, frame: np.ndarray, frame_number: int) -> np.ndarray:
|
| 861 |
-
"""Perform person segmentation"""
|
| 862 |
-
try:
|
| 863 |
-
mask = segment_person_hq(frame, self.sam2_predictor)
|
| 864 |
-
|
| 865 |
-
if mask is None or mask.size == 0:
|
| 866 |
-
raise exceptions.SegmentationError(frame_number, "Segmentation returned empty mask")
|
| 867 |
-
|
| 868 |
-
# Store current frame for optical flow (if enhanced mode enabled)
|
| 869 |
-
if USE_OPTICAL_FLOW_TRACKING:
|
| 870 |
-
current_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 871 |
-
self.optical_flow_data = current_gray
|
| 872 |
-
|
| 873 |
-
return mask
|
| 874 |
-
|
| 875 |
-
except Exception as e:
|
| 876 |
-
self.stats['segmentation_errors'] += 1
|
| 877 |
-
raise exceptions.SegmentationError(frame_number, f"Segmentation failed: {str(e)}")
|
| 878 |
-
|
| 879 |
-
def _segment_person_enhanced(self, frame: np.ndarray, frame_number: int) -> np.ndarray:
|
| 880 |
-
"""ENHANCED: Perform person segmentation with improvements"""
|
| 881 |
-
try:
|
| 882 |
-
mask = segment_person_hq(frame, self.sam2_predictor)
|
| 883 |
-
|
| 884 |
-
if mask is None or mask.size == 0:
|
| 885 |
-
raise exceptions.SegmentationError(frame_number, "Segmentation returned empty mask")
|
| 886 |
-
|
| 887 |
-
# Store current frame for optical flow
|
| 888 |
-
current_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 889 |
-
self.optical_flow_data = current_gray
|
| 890 |
-
|
| 891 |
-
return mask
|
| 892 |
-
|
| 893 |
-
except Exception as e:
|
| 894 |
-
self.stats['segmentation_errors'] += 1
|
| 895 |
-
raise exceptions.SegmentationError(frame_number, f"Enhanced segmentation failed: {str(e)}")
|
| 896 |
-
|
| 897 |
-
def _should_refine_mask(self, frame_number: int) -> bool:
|
| 898 |
-
"""Determine if mask should be refined for this frame"""
|
| 899 |
-
# Refine on keyframes or if no previous refined mask exists
|
| 900 |
-
return (
|
| 901 |
-
frame_number % self.quality_settings['keyframe_interval'] == 0 or
|
| 902 |
-
self.last_refined_mask is None or
|
| 903 |
-
not self.quality_settings.get('temporal_consistency', True)
|
| 904 |
-
)
|
| 905 |
-
|
| 906 |
-
def _refine_mask_original(self, frame: np.ndarray, mask: np.ndarray, frame_number: int) -> np.ndarray:
|
| 907 |
-
"""ORIGINAL: Refine mask using MatAnyone or fallback methods"""
|
| 908 |
-
try:
|
| 909 |
-
if self.matanyone_model is not None and self.quality_settings.get('edge_refinement', True):
|
| 910 |
-
refined_mask = refine_mask_hq(frame, mask, self.matanyone_model)
|
| 911 |
-
else:
|
| 912 |
-
# Fallback refinement using OpenCV operations
|
| 913 |
-
refined_mask = self._fallback_mask_refinement(mask)
|
| 914 |
-
|
| 915 |
-
return refined_mask
|
| 916 |
-
|
| 917 |
-
except Exception as e:
|
| 918 |
-
self.stats['refinement_errors'] += 1
|
| 919 |
-
logger.warning(f"Mask refinement failed for frame {frame_number}: {e}")
|
| 920 |
-
# Return original mask as fallback
|
| 921 |
-
return mask
|
| 922 |
-
|
| 923 |
-
def _fallback_mask_refinement(self, mask: np.ndarray) -> np.ndarray:
|
| 924 |
-
"""ORIGINAL: Fallback mask refinement using basic OpenCV operations"""
|
| 925 |
-
try:
|
| 926 |
-
# Morphological operations to clean up mask
|
| 927 |
-
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
|
| 928 |
-
refined = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
|
| 929 |
-
refined = cv2.morphologyEx(refined, cv2.MORPH_OPEN, kernel)
|
| 930 |
-
|
| 931 |
-
# Smooth edges
|
| 932 |
-
refined = cv2.GaussianBlur(refined, (3, 3), 1.0)
|
| 933 |
-
|
| 934 |
-
return refined
|
| 935 |
-
|
| 936 |
-
except Exception as e:
|
| 937 |
-
logger.warning(f"Fallback mask refinement failed: {e}")
|
| 938 |
-
return mask
|
| 939 |
-
|
| 940 |
-
def _fallback_mask_refinement_enhanced(self, mask: np.ndarray) -> np.ndarray:
|
| 941 |
-
"""ENHANCED: Improved fallback mask refinement"""
|
| 942 |
-
try:
|
| 943 |
-
# More aggressive morphological operations
|
| 944 |
-
kernel_small = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
|
| 945 |
-
kernel_large = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
| 946 |
-
|
| 947 |
-
# Remove small noise
|
| 948 |
-
refined = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel_small)
|
| 949 |
-
# Fill gaps
|
| 950 |
-
refined = cv2.morphologyEx(refined, cv2.MORPH_CLOSE, kernel_large)
|
| 951 |
-
|
| 952 |
-
# Edge smoothing with bilateral filter instead of Gaussian
|
| 953 |
-
refined = cv2.bilateralFilter(refined, 9, 75, 75)
|
| 954 |
-
|
| 955 |
-
return refined
|
| 956 |
-
|
| 957 |
-
except Exception as e:
|
| 958 |
-
logger.warning(f"Enhanced fallback mask refinement failed: {e}")
|
| 959 |
-
return mask
|
| 960 |
-
|
| 961 |
-
def _apply_temporal_consistency_original(self, current_mask: np.ndarray, frame_number: int) -> np.ndarray:
|
| 962 |
-
"""ORIGINAL: Apply temporal consistency using previous refined mask"""
|
| 963 |
-
if self.last_refined_mask is None or not self.quality_settings.get('temporal_consistency', True):
|
| 964 |
-
return current_mask
|
| 965 |
-
|
| 966 |
-
try:
|
| 967 |
-
# Blend current mask with previous refined mask
|
| 968 |
-
alpha = 0.7 # Weight for current mask
|
| 969 |
-
beta = 0.3 # Weight for previous mask
|
| 970 |
-
|
| 971 |
-
# Ensure masks have same shape
|
| 972 |
-
if current_mask.shape != self.last_refined_mask.shape:
|
| 973 |
-
last_mask = cv2.resize(self.last_refined_mask,
|
| 974 |
-
(current_mask.shape[1], current_mask.shape[0]))
|
| 975 |
-
else:
|
| 976 |
-
last_mask = self.last_refined_mask
|
| 977 |
-
|
| 978 |
-
# Weighted blend
|
| 979 |
-
blended_mask = cv2.addWeighted(current_mask, alpha, last_mask, beta, 0)
|
| 980 |
-
|
| 981 |
-
# Apply slight smoothing for temporal stability
|
| 982 |
-
blended_mask = cv2.GaussianBlur(blended_mask, (3, 3), 0.5)
|
| 983 |
-
|
| 984 |
-
return blended_mask
|
| 985 |
-
|
| 986 |
-
except Exception as e:
|
| 987 |
-
logger.warning(f"Temporal consistency application failed: {e}")
|
| 988 |
-
return current_mask
|
| 989 |
-
|
| 990 |
-
def _create_mask_preview_original(self, frame: np.ndarray, mask: np.ndarray) -> np.ndarray:
|
| 991 |
-
"""ORIGINAL: Create mask visualization preview"""
|
| 992 |
-
try:
|
| 993 |
-
# Create colored mask overlay
|
| 994 |
-
mask_colored = np.zeros_like(frame)
|
| 995 |
-
mask_colored[:, :, 1] = mask # Green channel for person
|
| 996 |
-
|
| 997 |
-
# Blend with original frame
|
| 998 |
-
alpha = 0.6
|
| 999 |
-
preview = cv2.addWeighted(frame, 1-alpha, mask_colored, alpha, 0)
|
| 1000 |
-
|
| 1001 |
-
return preview
|
| 1002 |
-
|
| 1003 |
-
except Exception as e:
|
| 1004 |
-
logger.warning(f"Mask preview creation failed: {e}")
|
| 1005 |
-
return frame
|
| 1006 |
-
|
| 1007 |
-
def _create_greenscreen_preview(self, frame: np.ndarray, mask: np.ndarray) -> np.ndarray:
|
| 1008 |
-
"""Create green screen preview"""
|
| 1009 |
-
try:
|
| 1010 |
-
# Create pure green background
|
| 1011 |
-
green_bg = np.zeros_like(frame)
|
| 1012 |
-
green_bg[:, :] = [0, 255, 0] # Pure green in BGR
|
| 1013 |
-
|
| 1014 |
-
# Apply mask
|
| 1015 |
-
mask_3ch = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) if len(mask.shape) == 2 else mask
|
| 1016 |
-
mask_norm = mask_3ch.astype(np.float32) / 255.0
|
| 1017 |
-
|
| 1018 |
-
result = (frame * mask_norm + green_bg * (1 - mask_norm)).astype(np.uint8)
|
| 1019 |
-
|
| 1020 |
-
return result
|
| 1021 |
-
|
| 1022 |
-
except Exception as e:
|
| 1023 |
-
logger.warning(f"Greenscreen preview creation failed: {e}")
|
| 1024 |
-
return frame
|
| 1025 |
-
|
| 1026 |
-
def _replace_background(self, frame: np.ndarray, mask: np.ndarray, background: np.ndarray) -> np.ndarray:
|
| 1027 |
-
"""Replace background using the refined mask"""
|
| 1028 |
-
try:
|
| 1029 |
-
result = replace_background_hq(frame, mask, background)
|
| 1030 |
-
return result
|
| 1031 |
-
|
| 1032 |
-
except Exception as e:
|
| 1033 |
-
logger.warning(f"Background replacement failed: {e}")
|
| 1034 |
-
return frame
|
| 1035 |
-
|
| 1036 |
-
def prepare_background(
|
| 1037 |
-
self,
|
| 1038 |
-
background_choice: str,
|
| 1039 |
-
custom_background_path: Optional[str],
|
| 1040 |
-
width: int,
|
| 1041 |
-
height: int
|
| 1042 |
-
) -> Optional[np.ndarray]:
|
| 1043 |
-
"""Prepare background image for processing (unchanged)"""
|
| 1044 |
-
try:
|
| 1045 |
-
if background_choice == "custom" and custom_background_path:
|
| 1046 |
-
if not os.path.exists(custom_background_path):
|
| 1047 |
-
raise exceptions.BackgroundProcessingError("custom", f"File not found: {custom_background_path}")
|
| 1048 |
-
|
| 1049 |
-
background = cv2.imread(custom_background_path)
|
| 1050 |
-
if background is None:
|
| 1051 |
-
raise exceptions.BackgroundProcessingError("custom", "Could not read custom background image")
|
| 1052 |
-
|
| 1053 |
-
logger.info(f"Loaded custom background: {custom_background_path}")
|
| 1054 |
-
|
| 1055 |
-
else:
|
| 1056 |
-
# Use professional background
|
| 1057 |
-
if background_choice not in PROFESSIONAL_BACKGROUNDS:
|
| 1058 |
-
raise exceptions.BackgroundProcessingError(background_choice, "Unknown professional background")
|
| 1059 |
-
|
| 1060 |
-
bg_config = PROFESSIONAL_BACKGROUNDS[background_choice]
|
| 1061 |
-
background = create_professional_background(bg_config, width, height)
|
| 1062 |
-
|
| 1063 |
-
logger.info(f"Generated professional background: {background_choice}")
|
| 1064 |
-
|
| 1065 |
-
# Resize to match video dimensions
|
| 1066 |
-
if background.shape[:2] != (height, width):
|
| 1067 |
-
background = cv2.resize(background, (width, height), interpolation=cv2.INTER_LANCZOS4)
|
| 1068 |
-
|
| 1069 |
-
# Validate background
|
| 1070 |
-
if background is None or background.size == 0:
|
| 1071 |
-
raise exceptions.BackgroundProcessingError(background_choice, "Background image is empty")
|
| 1072 |
-
|
| 1073 |
-
return background
|
| 1074 |
-
|
| 1075 |
-
except Exception as e:
|
| 1076 |
-
if isinstance(e, exceptions.BackgroundProcessingError):
|
| 1077 |
-
logger.error(str(e))
|
| 1078 |
-
return None
|
| 1079 |
-
else:
|
| 1080 |
-
logger.error(f"Unexpected error preparing background: {e}")
|
| 1081 |
-
return None
|
| 1082 |
-
|
| 1083 |
-
def _update_processing_stats(self, video_info: Dict[str, Any],
|
| 1084 |
-
processing_time: float, result: Dict[str, Any]):
|
| 1085 |
-
"""Update processing statistics"""
|
| 1086 |
-
self.stats['videos_processed'] += 1
|
| 1087 |
-
self.stats['total_frames_processed'] += result['successful_frames']
|
| 1088 |
-
self.stats['total_processing_time'] += processing_time
|
| 1089 |
-
self.stats['successful_frames'] += result['successful_frames']
|
| 1090 |
-
self.stats['failed_frames'] += result['failed_frames']
|
| 1091 |
-
|
| 1092 |
-
# Calculate average FPS across all processing
|
| 1093 |
-
if self.stats['total_processing_time'] > 0:
|
| 1094 |
-
self.stats['average_fps'] = self.stats['total_frames_processed'] / self.stats['total_processing_time']
|
| 1095 |
-
|
| 1096 |
-
def get_processing_capabilities(self) -> Dict[str, Any]:
|
| 1097 |
-
"""Get current processing capabilities"""
|
| 1098 |
-
capabilities = {
|
| 1099 |
-
'sam2_available': self.sam2_predictor is not None,
|
| 1100 |
-
'matanyone_available': self.matanyone_model is not None,
|
| 1101 |
-
'quality_preset': self.config.quality_preset,
|
| 1102 |
-
'supports_temporal_consistency': self.quality_settings.get('temporal_consistency', False),
|
| 1103 |
-
'supports_edge_refinement': self.quality_settings.get('edge_refinement', False),
|
| 1104 |
-
'keyframe_interval': self.quality_settings['keyframe_interval'],
|
| 1105 |
-
'max_resolution': self.config.get_resolution_limits(),
|
| 1106 |
-
'supported_formats': ['.mp4', '.avi', '.mov', '.mkv'],
|
| 1107 |
-
'memory_limit_gb': self.memory_manager.memory_limit_gb
|
| 1108 |
-
}
|
| 1109 |
-
|
| 1110 |
-
# Add enhanced capabilities
|
| 1111 |
-
if USE_TEMPORAL_ENHANCEMENT:
|
| 1112 |
-
capabilities.update({
|
| 1113 |
-
'temporal_enhancement': True,
|
| 1114 |
-
'hair_detection': USE_HAIR_DETECTION,
|
| 1115 |
-
'optical_flow_tracking': USE_OPTICAL_FLOW_TRACKING,
|
| 1116 |
-
'adaptive_refinement': USE_ADAPTIVE_REFINEMENT
|
| 1117 |
-
})
|
| 1118 |
-
|
| 1119 |
-
return capabilities
|
| 1120 |
-
|
| 1121 |
-
def get_status(self) -> Dict[str, Any]:
|
| 1122 |
-
"""Get current processor status"""
|
| 1123 |
-
status = {
|
| 1124 |
-
'processing_active': self.processing_active,
|
| 1125 |
-
'models_available': {
|
| 1126 |
-
'sam2': self.sam2_predictor is not None,
|
| 1127 |
-
'matanyone': self.matanyone_model is not None
|
| 1128 |
-
},
|
| 1129 |
-
'quality_settings': self.quality_settings,
|
| 1130 |
-
'statistics': self.stats.copy(),
|
| 1131 |
-
'cache_size': len(self.frame_cache),
|
| 1132 |
-
'memory_usage': self.memory_manager.get_memory_usage(),
|
| 1133 |
-
'capabilities': self.get_processing_capabilities()
|
| 1134 |
-
}
|
| 1135 |
-
|
| 1136 |
-
# Add enhanced status
|
| 1137 |
-
if USE_TEMPORAL_ENHANCEMENT:
|
| 1138 |
-
status.update({
|
| 1139 |
-
'mask_history_length': len(self.mask_history),
|
| 1140 |
-
'hair_cache_size': len(self.hair_regions_cache),
|
| 1141 |
-
'optical_flow_active': self.optical_flow_data is not None
|
| 1142 |
-
})
|
| 1143 |
-
|
| 1144 |
-
return status
|
| 1145 |
-
|
| 1146 |
-
def optimize_for_video(self, video_info: Dict[str, Any]) -> Dict[str, Any]:
|
| 1147 |
-
"""Optimize settings for specific video characteristics"""
|
| 1148 |
-
optimizations = {
|
| 1149 |
-
'original_settings': self.quality_settings.copy(),
|
| 1150 |
-
'optimizations_applied': []
|
| 1151 |
-
}
|
| 1152 |
-
|
| 1153 |
-
try:
|
| 1154 |
-
# High resolution video optimizations
|
| 1155 |
-
if video_info['width'] * video_info['height'] > 1920 * 1080:
|
| 1156 |
-
if self.quality_settings['keyframe_interval'] < 10:
|
| 1157 |
-
self.quality_settings['keyframe_interval'] = 10
|
| 1158 |
-
optimizations['optimizations_applied'].append('increased_keyframe_interval_for_high_res')
|
| 1159 |
-
|
| 1160 |
-
# Long video optimizations
|
| 1161 |
-
if video_info['duration'] > 300: # 5 minutes
|
| 1162 |
-
if self.config.memory_cleanup_interval > 20:
|
| 1163 |
-
self.config.memory_cleanup_interval = 20
|
| 1164 |
-
optimizations['optimizations_applied'].append('increased_memory_cleanup_frequency')
|
| 1165 |
-
|
| 1166 |
-
# Low FPS video optimizations
|
| 1167 |
-
if video_info['fps'] < 15:
|
| 1168 |
-
self.quality_settings['temporal_consistency'] = False
|
| 1169 |
-
optimizations['optimizations_applied'].append('disabled_temporal_consistency_for_low_fps')
|
| 1170 |
-
|
| 1171 |
-
# Memory-constrained optimizations
|
| 1172 |
-
memory_usage = self.memory_manager.get_memory_usage()
|
| 1173 |
-
memory_pressure = self.memory_manager.check_memory_pressure()
|
| 1174 |
-
|
| 1175 |
-
if memory_pressure['under_pressure']:
|
| 1176 |
-
self.quality_settings['edge_refinement'] = False
|
| 1177 |
-
self.quality_settings['keyframe_interval'] = max(self.quality_settings['keyframe_interval'], 15)
|
| 1178 |
-
optimizations['optimizations_applied'].extend([
|
| 1179 |
-
'disabled_edge_refinement_for_memory',
|
| 1180 |
-
'increased_keyframe_interval_for_memory'
|
| 1181 |
-
])
|
| 1182 |
-
|
| 1183 |
-
optimizations['final_settings'] = self.quality_settings.copy()
|
| 1184 |
-
|
| 1185 |
-
if optimizations['optimizations_applied']:
|
| 1186 |
-
logger.info(f"Applied video optimizations: {optimizations['optimizations_applied']}")
|
| 1187 |
-
|
| 1188 |
-
return optimizations
|
| 1189 |
-
|
| 1190 |
-
except Exception as e:
|
| 1191 |
-
logger.warning(f"Video optimization failed: {e}")
|
| 1192 |
-
return optimizations
|
| 1193 |
-
|
| 1194 |
-
def reset_cache(self):
|
| 1195 |
-
"""Reset frame cache and temporal state"""
|
| 1196 |
-
self.frame_cache.clear()
|
| 1197 |
-
self.last_refined_mask = None
|
| 1198 |
-
self.stats['cache_hits'] = 0
|
| 1199 |
-
self._reset_temporal_state()
|
| 1200 |
-
logger.debug("Frame cache and temporal state reset")
|
| 1201 |
-
|
| 1202 |
-
def cleanup(self):
|
| 1203 |
-
"""Clean up processor resources"""
|
| 1204 |
-
try:
|
| 1205 |
-
self.reset_cache()
|
| 1206 |
-
self.processing_active = False
|
| 1207 |
-
logger.info("CoreVideoProcessor cleanup completed")
|
| 1208 |
-
except Exception as e:
|
| 1209 |
-
logger.warning(f"Error during cleanup: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|