Create models/loaders/matanyone_loader.py
Browse files
models/loaders/matanyone_loader.py
ADDED
|
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
MatAnyone Model Loader
|
| 4 |
+
Handles MatAnyone loading with proper device initialization
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import time
|
| 9 |
+
import logging
|
| 10 |
+
import traceback
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
from typing import Optional, Dict, Any
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
import numpy as np
|
| 16 |
+
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class MatAnyoneLoader:
|
| 21 |
+
"""Dedicated loader for MatAnyone models"""
|
| 22 |
+
|
| 23 |
+
def __init__(self, device: str = "cuda", cache_dir: str = "./checkpoints/matanyone_cache"):
|
| 24 |
+
self.device = device
|
| 25 |
+
self.cache_dir = cache_dir
|
| 26 |
+
os.makedirs(self.cache_dir, exist_ok=True)
|
| 27 |
+
|
| 28 |
+
self.model = None
|
| 29 |
+
self.model_id = "PeiqingYang/MatAnyone"
|
| 30 |
+
self.load_time = 0.0
|
| 31 |
+
|
| 32 |
+
def load(self) -> Optional[Any]:
|
| 33 |
+
"""
|
| 34 |
+
Load MatAnyone model
|
| 35 |
+
Returns:
|
| 36 |
+
Loaded model or None
|
| 37 |
+
"""
|
| 38 |
+
logger.info(f"Loading MatAnyone model: {self.model_id}")
|
| 39 |
+
|
| 40 |
+
# Try loading strategies in order
|
| 41 |
+
strategies = [
|
| 42 |
+
("official", self._load_official),
|
| 43 |
+
("fallback", self._load_fallback)
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
for strategy_name, strategy_func in strategies:
|
| 47 |
+
try:
|
| 48 |
+
logger.info(f"Trying MatAnyone loading strategy: {strategy_name}")
|
| 49 |
+
start_time = time.time()
|
| 50 |
+
model = strategy_func()
|
| 51 |
+
if model:
|
| 52 |
+
self.load_time = time.time() - start_time
|
| 53 |
+
self.model = model
|
| 54 |
+
logger.info(f"MatAnyone loaded successfully via {strategy_name} in {self.load_time:.2f}s")
|
| 55 |
+
return model
|
| 56 |
+
except Exception as e:
|
| 57 |
+
logger.error(f"MatAnyone {strategy_name} strategy failed: {e}")
|
| 58 |
+
logger.debug(traceback.format_exc())
|
| 59 |
+
continue
|
| 60 |
+
|
| 61 |
+
logger.error("All MatAnyone loading strategies failed")
|
| 62 |
+
return None
|
| 63 |
+
|
| 64 |
+
def _load_official(self) -> Optional[Any]:
|
| 65 |
+
"""Load using official MatAnyone API"""
|
| 66 |
+
from matanyone import InferenceCore
|
| 67 |
+
|
| 68 |
+
# Create processor - pass model ID as positional argument
|
| 69 |
+
processor = InferenceCore(self.model_id)
|
| 70 |
+
|
| 71 |
+
# Ensure processor is properly initialized for the device
|
| 72 |
+
if hasattr(processor, 'device'):
|
| 73 |
+
processor.device = self.device
|
| 74 |
+
|
| 75 |
+
# Move model components to device if they exist
|
| 76 |
+
if hasattr(processor, 'model'):
|
| 77 |
+
if hasattr(processor.model, 'to'):
|
| 78 |
+
processor.model = processor.model.to(self.device)
|
| 79 |
+
processor.model.eval()
|
| 80 |
+
|
| 81 |
+
# Patch the processor to handle inputs properly
|
| 82 |
+
self._patch_processor(processor)
|
| 83 |
+
|
| 84 |
+
return processor
|
| 85 |
+
|
| 86 |
+
def _patch_processor(self, processor):
|
| 87 |
+
"""
|
| 88 |
+
Patch the MatAnyone processor to handle device placement and tensor formats correctly
|
| 89 |
+
"""
|
| 90 |
+
original_step = None
|
| 91 |
+
original_process = None
|
| 92 |
+
|
| 93 |
+
if hasattr(processor, 'step'):
|
| 94 |
+
original_step = processor.step
|
| 95 |
+
if hasattr(processor, 'process'):
|
| 96 |
+
original_process = processor.process
|
| 97 |
+
|
| 98 |
+
device = self.device
|
| 99 |
+
|
| 100 |
+
def safe_step(image, mask, idx_mask=False, **kwargs):
|
| 101 |
+
"""Wrapped step function with proper device handling"""
|
| 102 |
+
try:
|
| 103 |
+
# Ensure inputs are tensors on the correct device
|
| 104 |
+
if isinstance(image, np.ndarray):
|
| 105 |
+
image = torch.from_numpy(image).to(device)
|
| 106 |
+
elif isinstance(image, torch.Tensor):
|
| 107 |
+
image = image.to(device)
|
| 108 |
+
|
| 109 |
+
if isinstance(mask, np.ndarray):
|
| 110 |
+
mask = torch.from_numpy(mask).to(device)
|
| 111 |
+
elif isinstance(mask, torch.Tensor):
|
| 112 |
+
mask = mask.to(device)
|
| 113 |
+
|
| 114 |
+
# Handle image format (ensure CHW or NCHW)
|
| 115 |
+
if image.dim() == 3:
|
| 116 |
+
# HWC to CHW if needed
|
| 117 |
+
if image.shape[-1] in [1, 3, 4]:
|
| 118 |
+
image = image.permute(2, 0, 1)
|
| 119 |
+
# Add batch dimension if needed
|
| 120 |
+
if image.dim() == 3:
|
| 121 |
+
image = image.unsqueeze(0)
|
| 122 |
+
|
| 123 |
+
# Handle mask format
|
| 124 |
+
if mask.dim() == 2:
|
| 125 |
+
mask = mask.unsqueeze(0) # Add channel dimension
|
| 126 |
+
|
| 127 |
+
# Ensure float tensors
|
| 128 |
+
if image.dtype != torch.float32:
|
| 129 |
+
image = image.float()
|
| 130 |
+
if not idx_mask and mask.dtype != torch.float32:
|
| 131 |
+
mask = mask.float()
|
| 132 |
+
|
| 133 |
+
# Normalize if needed
|
| 134 |
+
if image.max() > 1.0:
|
| 135 |
+
image = image / 255.0
|
| 136 |
+
if not idx_mask and mask.max() > 1.0:
|
| 137 |
+
mask = mask / 255.0
|
| 138 |
+
|
| 139 |
+
# Call original method
|
| 140 |
+
if original_step:
|
| 141 |
+
return original_step(image, mask, idx_mask=idx_mask, **kwargs)
|
| 142 |
+
else:
|
| 143 |
+
# Fallback if no original method
|
| 144 |
+
return mask
|
| 145 |
+
|
| 146 |
+
except Exception as e:
|
| 147 |
+
logger.error(f"MatAnyone step failed: {e}")
|
| 148 |
+
logger.debug(traceback.format_exc())
|
| 149 |
+
# Return input mask as fallback
|
| 150 |
+
return mask
|
| 151 |
+
|
| 152 |
+
def safe_process(image, mask, **kwargs):
|
| 153 |
+
"""Wrapped process function with proper device handling"""
|
| 154 |
+
try:
|
| 155 |
+
# Use safe_step for processing
|
| 156 |
+
return safe_step(image, mask, idx_mask=False, **kwargs)
|
| 157 |
+
except Exception as e:
|
| 158 |
+
logger.error(f"MatAnyone process failed: {e}")
|
| 159 |
+
return mask
|
| 160 |
+
|
| 161 |
+
# Apply patches
|
| 162 |
+
if hasattr(processor, 'step'):
|
| 163 |
+
processor.step = safe_step
|
| 164 |
+
logger.info("Patched MatAnyone step method for device safety")
|
| 165 |
+
|
| 166 |
+
if hasattr(processor, 'process'):
|
| 167 |
+
processor.process = safe_process
|
| 168 |
+
logger.info("Patched MatAnyone process method for device safety")
|
| 169 |
+
|
| 170 |
+
def _load_fallback(self) -> Optional[Any]:
|
| 171 |
+
"""Create fallback processor for testing"""
|
| 172 |
+
|
| 173 |
+
class FallbackMatAnyone:
|
| 174 |
+
def __init__(self, device):
|
| 175 |
+
self.device = device
|
| 176 |
+
|
| 177 |
+
def step(self, image, mask, idx_mask=False, **kwargs):
|
| 178 |
+
"""Pass through mask with minor smoothing"""
|
| 179 |
+
if isinstance(mask, np.ndarray):
|
| 180 |
+
# Apply slight Gaussian blur for edge smoothing
|
| 181 |
+
import cv2
|
| 182 |
+
if mask.ndim == 2:
|
| 183 |
+
smoothed = cv2.GaussianBlur(mask, (5, 5), 1.0)
|
| 184 |
+
return smoothed
|
| 185 |
+
elif mask.ndim == 3:
|
| 186 |
+
smoothed = np.zeros_like(mask)
|
| 187 |
+
for i in range(mask.shape[0]):
|
| 188 |
+
smoothed[i] = cv2.GaussianBlur(mask[i], (5, 5), 1.0)
|
| 189 |
+
return smoothed
|
| 190 |
+
return mask
|
| 191 |
+
|
| 192 |
+
def process(self, image, mask, **kwargs):
|
| 193 |
+
"""Alias for step"""
|
| 194 |
+
return self.step(image, mask, **kwargs)
|
| 195 |
+
|
| 196 |
+
logger.warning("Using fallback MatAnyone (limited refinement)")
|
| 197 |
+
return FallbackMatAnyone(self.device)
|
| 198 |
+
|
| 199 |
+
def cleanup(self):
|
| 200 |
+
"""Clean up resources"""
|
| 201 |
+
if self.model:
|
| 202 |
+
del self.model
|
| 203 |
+
self.model = None
|
| 204 |
+
if torch.cuda.is_available():
|
| 205 |
+
torch.cuda.empty_cache()
|
| 206 |
+
|
| 207 |
+
def get_info(self) -> Dict[str, Any]:
|
| 208 |
+
"""Get loader information"""
|
| 209 |
+
return {
|
| 210 |
+
"loaded": self.model is not None,
|
| 211 |
+
"model_id": self.model_id,
|
| 212 |
+
"device": self.device,
|
| 213 |
+
"load_time": self.load_time,
|
| 214 |
+
"model_type": type(self.model).__name__ if self.model else None
|
| 215 |
+
}
|