Update utils/cv_processing.py
Browse files- utils/cv_processing.py +82 -72
utils/cv_processing.py
CHANGED
|
@@ -1,20 +1,20 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
cv_processing.py Β· slim orchestrator layer (self-contained)
|
| 4 |
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 5 |
Public API (unchanged):
|
| 6 |
-
- segment_person_hq(frame, predictor=None, fallback_enabled=True
|
| 7 |
-
- segment_person_hq_original(...)
|
| 8 |
-
- refine_mask_hq(frame, mask, matanyone=None, fallback_enabled=True
|
| 9 |
-
- replace_background_hq(frame, mask, background, fallback_enabled=True)
|
| 10 |
-
- create_professional_background(key_or_cfg, width, height)
|
| 11 |
- validate_video_file(video_path) -> (bool, reason)
|
| 12 |
|
| 13 |
Design:
|
| 14 |
* NO imports from other utils.* modules β avoids circular imports.
|
| 15 |
-
* Torch
|
| 16 |
-
* All masks are single-channel float32 in [0..1] at boundaries
|
| 17 |
-
* MatAnyOne
|
| 18 |
"""
|
| 19 |
|
| 20 |
from __future__ import annotations
|
|
@@ -29,7 +29,7 @@
|
|
| 29 |
logger = logging.getLogger(__name__)
|
| 30 |
|
| 31 |
# ----------------------------------------------------------------------------
|
| 32 |
-
# Background presets (
|
| 33 |
# ----------------------------------------------------------------------------
|
| 34 |
PROFESSIONAL_BACKGROUNDS_LOCAL: Dict[str, Dict[str, Any]] = {
|
| 35 |
"office": {"color": (240, 248, 255), "gradient": True},
|
|
@@ -39,30 +39,22 @@
|
|
| 39 |
"white": {"color": (255, 255, 255), "gradient": False},
|
| 40 |
"black": {"color": (0, 0, 0), "gradient": False},
|
| 41 |
}
|
|
|
|
|
|
|
| 42 |
|
| 43 |
# ----------------------------------------------------------------------------
|
| 44 |
# Helpers
|
| 45 |
# ----------------------------------------------------------------------------
|
| 46 |
def _ensure_rgb(img: np.ndarray) -> np.ndarray:
|
| 47 |
-
"""Convert BGRβRGB if looks like BGR
|
| 48 |
if img is None:
|
| 49 |
return img
|
| 50 |
if img.ndim == 3 and img.shape[2] == 3:
|
| 51 |
-
# Heuristic: assume OpenCV BGR
|
| 52 |
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 53 |
return img
|
| 54 |
|
| 55 |
-
def _ensure_bgr(img: np.ndarray) -> np.ndarray:
|
| 56 |
-
"""Convert RGBβBGR if looks like RGB; otherwise pass-through."""
|
| 57 |
-
if img is None:
|
| 58 |
-
return img
|
| 59 |
-
if img.ndim == 3 and img.shape[2] == 3:
|
| 60 |
-
# Heuristic: assume non-OpenCV images are RGB
|
| 61 |
-
return cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
| 62 |
-
return img
|
| 63 |
-
|
| 64 |
def _to_mask01(m: np.ndarray) -> np.ndarray:
|
| 65 |
-
"""
|
| 66 |
if m is None:
|
| 67 |
return None
|
| 68 |
if m.ndim == 3:
|
|
@@ -73,7 +65,7 @@ def _to_mask01(m: np.ndarray) -> np.ndarray:
|
|
| 73 |
return np.clip(m, 0.0, 1.0)
|
| 74 |
|
| 75 |
def _feather(mask01: np.ndarray, k: int = 2) -> np.ndarray:
|
| 76 |
-
"""
|
| 77 |
if mask01.ndim == 3:
|
| 78 |
mask01 = mask01[..., 0]
|
| 79 |
k = max(1, int(k) * 2 + 1)
|
|
@@ -90,13 +82,21 @@ def _vertical_gradient(top: Tuple[int,int,int], bottom: Tuple[int,int,int], widt
|
|
| 90 |
bg[y, :] = (r, g, b)
|
| 91 |
return bg
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
# ----------------------------------------------------------------------------
|
| 94 |
-
# Background creation (
|
| 95 |
# ----------------------------------------------------------------------------
|
| 96 |
def create_professional_background(key_or_cfg: Any, width: int, height: int) -> np.ndarray:
|
| 97 |
"""
|
| 98 |
Accepts:
|
| 99 |
-
- key: str in
|
| 100 |
- cfg: {"color": (r,g,b), "gradient": bool}
|
| 101 |
Returns RGB uint8 image (H,W,3).
|
| 102 |
"""
|
|
@@ -113,19 +113,14 @@ def create_professional_background(key_or_cfg: Any, width: int, height: int) ->
|
|
| 113 |
if not use_grad:
|
| 114 |
return np.full((height, width, 3), color, dtype=np.uint8)
|
| 115 |
|
| 116 |
-
# Simple vertical gradient dark->base color
|
| 117 |
dark = (int(color[0]*0.7), int(color[1]*0.7), int(color[2]*0.7))
|
| 118 |
-
|
| 119 |
-
return bg # already RGB by convention
|
| 120 |
|
| 121 |
# ----------------------------------------------------------------------------
|
| 122 |
# Segmentation
|
| 123 |
# ----------------------------------------------------------------------------
|
| 124 |
def _simple_person_segmentation(frame_bgr: np.ndarray) -> np.ndarray:
|
| 125 |
-
"""
|
| 126 |
-
Very simple fallback segmentation by suppressing green/white backgrounds.
|
| 127 |
-
Returns mask01 (H,W) float32.
|
| 128 |
-
"""
|
| 129 |
hsv = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2HSV)
|
| 130 |
|
| 131 |
lower_green = np.array([40, 40, 40], dtype=np.uint8)
|
|
@@ -145,13 +140,22 @@ def _simple_person_segmentation(frame_bgr: np.ndarray) -> np.ndarray:
|
|
| 145 |
|
| 146 |
return (person_mask.astype(np.float32) / 255.0)
|
| 147 |
|
| 148 |
-
def segment_person_hq(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
"""
|
| 150 |
Try SAM2 predictor if available; return single-channel float32 mask in [0..1].
|
| 151 |
-
-
|
| 152 |
-
- predictor.predict returns masks with shapes (N,H,W) or (H,W)
|
| 153 |
"""
|
| 154 |
try:
|
|
|
|
|
|
|
|
|
|
| 155 |
if predictor is not None and hasattr(predictor, "set_image") and hasattr(predictor, "predict"):
|
| 156 |
rgb = _ensure_rgb(frame)
|
| 157 |
predictor.set_image(rgb)
|
|
@@ -164,18 +168,11 @@ def segment_person_hq(frame: np.ndarray, predictor: Optional[Any] = None, fallba
|
|
| 164 |
multimask_output=True
|
| 165 |
)
|
| 166 |
|
| 167 |
-
|
| 168 |
-
if
|
| 169 |
-
m = masks
|
| 170 |
-
else:
|
| 171 |
-
m = np.array(masks)
|
| 172 |
-
|
| 173 |
-
if m.ndim == 3: # N,H,W
|
| 174 |
idx = int(np.argmax(scores)) if scores is not None else 0
|
| 175 |
m = m[idx]
|
| 176 |
-
elif m.ndim
|
| 177 |
-
pass
|
| 178 |
-
else:
|
| 179 |
raise RuntimeError(f"Unexpected SAM2 mask shape: {m.shape}")
|
| 180 |
|
| 181 |
return _to_mask01(m)
|
|
@@ -185,7 +182,7 @@ def segment_person_hq(frame: np.ndarray, predictor: Optional[Any] = None, fallba
|
|
| 185 |
|
| 186 |
return _simple_person_segmentation(frame) if fallback_enabled else np.ones(frame.shape[:2], dtype=np.float32)
|
| 187 |
|
| 188 |
-
# Back-compat alias
|
| 189 |
segment_person_hq_original = segment_person_hq
|
| 190 |
|
| 191 |
# ----------------------------------------------------------------------------
|
|
@@ -194,13 +191,11 @@ def segment_person_hq(frame: np.ndarray, predictor: Optional[Any] = None, fallba
|
|
| 194 |
def _to_tensor_chw(img_uint8_bgr: np.ndarray) -> "torch.Tensor":
|
| 195 |
import torch
|
| 196 |
rgb = cv2.cvtColor(img_uint8_bgr, cv2.COLOR_BGR2RGB)
|
| 197 |
-
|
| 198 |
-
return t
|
| 199 |
|
| 200 |
def _mask_to_tensor01(mask01: np.ndarray) -> "torch.Tensor":
|
| 201 |
import torch
|
| 202 |
-
|
| 203 |
-
return m
|
| 204 |
|
| 205 |
def _tensor_to_mask01(t: "torch.Tensor") -> np.ndarray:
|
| 206 |
import torch
|
|
@@ -216,23 +211,36 @@ def _simple_mask_refinement(mask01: np.ndarray) -> np.ndarray:
|
|
| 216 |
m = cv2.bilateralFilter(m, 9, 75, 75)
|
| 217 |
return (m.astype(np.float32) / 255.0)
|
| 218 |
|
| 219 |
-
def refine_mask_hq(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
"""
|
| 221 |
-
|
| 222 |
-
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
- No 5D tensors; avoids conv2d errors like [1,1,3,720,1280].
|
| 226 |
"""
|
| 227 |
-
|
|
|
|
|
|
|
|
|
|
| 228 |
mask01 = _to_mask01(mask)
|
| 229 |
|
| 230 |
try:
|
|
|
|
|
|
|
|
|
|
| 231 |
if matanyone is not None:
|
| 232 |
import torch
|
| 233 |
|
| 234 |
-
img_t = _to_tensor_chw(frame).unsqueeze(0)
|
| 235 |
-
mask_t = _mask_to_tensor01(mask01)
|
| 236 |
|
| 237 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 238 |
img_t = img_t.to(device)
|
|
@@ -246,19 +254,15 @@ def refine_mask_hq(frame: np.ndarray, mask: np.ndarray, matanyone: Optional[Any]
|
|
| 246 |
objects=None,
|
| 247 |
first_frame_pred=True
|
| 248 |
)
|
| 249 |
-
# out should be (1,1,H,W)
|
| 250 |
if hasattr(matanyone, "output_prob_to_mask"):
|
| 251 |
out = matanyone.output_prob_to_mask(out)
|
| 252 |
return _tensor_to_mask01(out)
|
| 253 |
|
| 254 |
-
|
| 255 |
-
# Generic .process(image, mask) path; accepts numpy/PIL
|
| 256 |
refined = matanyone.process(frame, mask01)
|
| 257 |
-
|
| 258 |
-
return _to_mask01(refined)
|
| 259 |
|
| 260 |
-
|
| 261 |
-
logger.warning("MatAnyOne provided but no 'step' or 'process' method found.")
|
| 262 |
|
| 263 |
except Exception as e:
|
| 264 |
logger.warning("MatAnyOne refinement failed: %s", e)
|
|
@@ -268,23 +272,28 @@ def refine_mask_hq(frame: np.ndarray, mask: np.ndarray, matanyone: Optional[Any]
|
|
| 268 |
# ----------------------------------------------------------------------------
|
| 269 |
# Compositing
|
| 270 |
# ----------------------------------------------------------------------------
|
| 271 |
-
def replace_background_hq(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
"""
|
| 273 |
Composite frame over background using feathered mask.
|
| 274 |
Inputs:
|
| 275 |
-
- frame: (H,W,3) uint8 (BGR or RGB,
|
| 276 |
- mask01: (H,W) or (H,W,1) float32 in [0..1]
|
| 277 |
- background: (H,W,3) uint8
|
| 278 |
Returns:
|
| 279 |
-
- composited frame (H,W,3) uint8
|
| 280 |
"""
|
| 281 |
try:
|
| 282 |
H, W = frame.shape[:2]
|
| 283 |
if background.shape[:2] != (H, W):
|
| 284 |
background = cv2.resize(background, (W, H), interpolation=cv2.INTER_LANCZOS4)
|
| 285 |
|
| 286 |
-
m = _to_mask01(mask01)
|
| 287 |
-
m = _feather(m, k=2)
|
| 288 |
m3 = np.repeat(m[:, :, None], 3, axis=2)
|
| 289 |
|
| 290 |
comp = frame.astype(np.float32) * m3 + background.astype(np.float32) * (1.0 - m3)
|
|
@@ -296,7 +305,7 @@ def replace_background_hq(frame: np.ndarray, mask01: np.ndarray, background: np.
|
|
| 296 |
raise
|
| 297 |
|
| 298 |
# ----------------------------------------------------------------------------
|
| 299 |
-
# Video validation
|
| 300 |
# ----------------------------------------------------------------------------
|
| 301 |
def validate_video_file(video_path: str) -> Tuple[bool, str]:
|
| 302 |
"""
|
|
@@ -350,4 +359,5 @@ def validate_video_file(video_path: str) -> Tuple[bool, str]:
|
|
| 350 |
"replace_background_hq",
|
| 351 |
"create_professional_background",
|
| 352 |
"validate_video_file",
|
|
|
|
| 353 |
]
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
cv_processing.py Β· slim orchestrator layer (self-contained, backward-compatible)
|
| 4 |
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 5 |
Public API (unchanged):
|
| 6 |
+
- segment_person_hq(frame, predictor=None, fallback_enabled=True, **compat)
|
| 7 |
+
- segment_person_hq_original(...)
|
| 8 |
+
- refine_mask_hq(frame, mask, matanyone=None, fallback_enabled=True, **compat)
|
| 9 |
+
- replace_background_hq(frame, mask, background, fallback_enabled=True)
|
| 10 |
+
- create_professional_background(key_or_cfg, width, height)
|
| 11 |
- validate_video_file(video_path) -> (bool, reason)
|
| 12 |
|
| 13 |
Design:
|
| 14 |
* NO imports from other utils.* modules β avoids circular imports.
|
| 15 |
+
* Torch is imported lazily inside functions.
|
| 16 |
+
* All masks are single-channel float32 in [0..1] at stage boundaries.
|
| 17 |
+
* MatAnyOne gets (N,C,H,W) β no 5D tensors.
|
| 18 |
"""
|
| 19 |
|
| 20 |
from __future__ import annotations
|
|
|
|
| 29 |
logger = logging.getLogger(__name__)
|
| 30 |
|
| 31 |
# ----------------------------------------------------------------------------
|
| 32 |
+
# Background presets (local copy; safe defaults)
|
| 33 |
# ----------------------------------------------------------------------------
|
| 34 |
PROFESSIONAL_BACKGROUNDS_LOCAL: Dict[str, Dict[str, Any]] = {
|
| 35 |
"office": {"color": (240, 248, 255), "gradient": True},
|
|
|
|
| 39 |
"white": {"color": (255, 255, 255), "gradient": False},
|
| 40 |
"black": {"color": (0, 0, 0), "gradient": False},
|
| 41 |
}
|
| 42 |
+
# Optional alias if callers import by this name
|
| 43 |
+
PROFESSIONAL_BACKGROUNDS = PROFESSIONAL_BACKGROUNDS_LOCAL
|
| 44 |
|
| 45 |
# ----------------------------------------------------------------------------
|
| 46 |
# Helpers
|
| 47 |
# ----------------------------------------------------------------------------
|
| 48 |
def _ensure_rgb(img: np.ndarray) -> np.ndarray:
|
| 49 |
+
"""Convert BGRβRGB if it looks like BGR (OpenCV convention)."""
|
| 50 |
if img is None:
|
| 51 |
return img
|
| 52 |
if img.ndim == 3 and img.shape[2] == 3:
|
|
|
|
| 53 |
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 54 |
return img
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
def _to_mask01(m: np.ndarray) -> np.ndarray:
|
| 57 |
+
"""Return single-channel float32 in [0..1]."""
|
| 58 |
if m is None:
|
| 59 |
return None
|
| 60 |
if m.ndim == 3:
|
|
|
|
| 65 |
return np.clip(m, 0.0, 1.0)
|
| 66 |
|
| 67 |
def _feather(mask01: np.ndarray, k: int = 2) -> np.ndarray:
|
| 68 |
+
"""Tiny Gaussian feather for smoother edges."""
|
| 69 |
if mask01.ndim == 3:
|
| 70 |
mask01 = mask01[..., 0]
|
| 71 |
k = max(1, int(k) * 2 + 1)
|
|
|
|
| 82 |
bg[y, :] = (r, g, b)
|
| 83 |
return bg
|
| 84 |
|
| 85 |
+
def _looks_like_mask(x: Any) -> bool:
|
| 86 |
+
return (
|
| 87 |
+
isinstance(x, np.ndarray)
|
| 88 |
+
and x.ndim in (2, 3)
|
| 89 |
+
and (x.ndim == 2 or (x.ndim == 3 and x.shape[2] in (1, 3)))
|
| 90 |
+
and x.dtype != object
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
# ----------------------------------------------------------------------------
|
| 94 |
+
# Background creation (RGB)
|
| 95 |
# ----------------------------------------------------------------------------
|
| 96 |
def create_professional_background(key_or_cfg: Any, width: int, height: int) -> np.ndarray:
|
| 97 |
"""
|
| 98 |
Accepts:
|
| 99 |
+
- key: str in preset dict
|
| 100 |
- cfg: {"color": (r,g,b), "gradient": bool}
|
| 101 |
Returns RGB uint8 image (H,W,3).
|
| 102 |
"""
|
|
|
|
| 113 |
if not use_grad:
|
| 114 |
return np.full((height, width, 3), color, dtype=np.uint8)
|
| 115 |
|
|
|
|
| 116 |
dark = (int(color[0]*0.7), int(color[1]*0.7), int(color[2]*0.7))
|
| 117 |
+
return _vertical_gradient(dark, color, width, height)
|
|
|
|
| 118 |
|
| 119 |
# ----------------------------------------------------------------------------
|
| 120 |
# Segmentation
|
| 121 |
# ----------------------------------------------------------------------------
|
| 122 |
def _simple_person_segmentation(frame_bgr: np.ndarray) -> np.ndarray:
|
| 123 |
+
"""Very simple fallback segmentation by suppressing green/white backgrounds."""
|
|
|
|
|
|
|
|
|
|
| 124 |
hsv = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2HSV)
|
| 125 |
|
| 126 |
lower_green = np.array([40, 40, 40], dtype=np.uint8)
|
|
|
|
| 140 |
|
| 141 |
return (person_mask.astype(np.float32) / 255.0)
|
| 142 |
|
| 143 |
+
def segment_person_hq(
|
| 144 |
+
frame: np.ndarray,
|
| 145 |
+
predictor: Optional[Any] = None,
|
| 146 |
+
fallback_enabled: bool = True,
|
| 147 |
+
# backward-compat shim:
|
| 148 |
+
use_sam2: Optional[bool] = None,
|
| 149 |
+
**_compat_kwargs,
|
| 150 |
+
) -> np.ndarray:
|
| 151 |
"""
|
| 152 |
Try SAM2 predictor if available; return single-channel float32 mask in [0..1].
|
| 153 |
+
Backward-compat: accepts use_sam2 (if False β force fallback).
|
|
|
|
| 154 |
"""
|
| 155 |
try:
|
| 156 |
+
if use_sam2 is False:
|
| 157 |
+
return _simple_person_segmentation(frame)
|
| 158 |
+
|
| 159 |
if predictor is not None and hasattr(predictor, "set_image") and hasattr(predictor, "predict"):
|
| 160 |
rgb = _ensure_rgb(frame)
|
| 161 |
predictor.set_image(rgb)
|
|
|
|
| 168 |
multimask_output=True
|
| 169 |
)
|
| 170 |
|
| 171 |
+
m = np.array(masks)
|
| 172 |
+
if m.ndim == 3: # (N,H,W)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
idx = int(np.argmax(scores)) if scores is not None else 0
|
| 174 |
m = m[idx]
|
| 175 |
+
elif m.ndim != 2: # not (H,W)
|
|
|
|
|
|
|
| 176 |
raise RuntimeError(f"Unexpected SAM2 mask shape: {m.shape}")
|
| 177 |
|
| 178 |
return _to_mask01(m)
|
|
|
|
| 182 |
|
| 183 |
return _simple_person_segmentation(frame) if fallback_enabled else np.ones(frame.shape[:2], dtype=np.float32)
|
| 184 |
|
| 185 |
+
# Back-compat alias
|
| 186 |
segment_person_hq_original = segment_person_hq
|
| 187 |
|
| 188 |
# ----------------------------------------------------------------------------
|
|
|
|
| 191 |
def _to_tensor_chw(img_uint8_bgr: np.ndarray) -> "torch.Tensor":
|
| 192 |
import torch
|
| 193 |
rgb = cv2.cvtColor(img_uint8_bgr, cv2.COLOR_BGR2RGB)
|
| 194 |
+
return torch.from_numpy(rgb).permute(2, 0, 1).contiguous().float() / 255.0 # (3,H,W)
|
|
|
|
| 195 |
|
| 196 |
def _mask_to_tensor01(mask01: np.ndarray) -> "torch.Tensor":
|
| 197 |
import torch
|
| 198 |
+
return torch.from_numpy(mask01.astype(np.float32)).unsqueeze(0).unsqueeze(0) # (1,1,H,W)
|
|
|
|
| 199 |
|
| 200 |
def _tensor_to_mask01(t: "torch.Tensor") -> np.ndarray:
|
| 201 |
import torch
|
|
|
|
| 211 |
m = cv2.bilateralFilter(m, 9, 75, 75)
|
| 212 |
return (m.astype(np.float32) / 255.0)
|
| 213 |
|
| 214 |
+
def refine_mask_hq(
|
| 215 |
+
frame: np.ndarray,
|
| 216 |
+
mask: np.ndarray,
|
| 217 |
+
matanyone: Optional[Any] = None,
|
| 218 |
+
fallback_enabled: bool = True,
|
| 219 |
+
# backward-compat shims:
|
| 220 |
+
use_matanyone: Optional[bool] = None,
|
| 221 |
+
**_compat_kwargs,
|
| 222 |
+
) -> np.ndarray:
|
| 223 |
"""
|
| 224 |
+
Refine single-channel mask with MatAnyOne if available.
|
| 225 |
+
Backward-compat:
|
| 226 |
+
- accepts use_matanyone (False β skip model)
|
| 227 |
+
- tolerates legacy arg order refine_mask_hq(mask, frame, ...)
|
|
|
|
| 228 |
"""
|
| 229 |
+
# tolerate legacy order: refine_mask_hq(mask, frame, ...)
|
| 230 |
+
if _looks_like_mask(frame) and isinstance(mask, np.ndarray) and mask.ndim == 3 and mask.shape[2] == 3:
|
| 231 |
+
frame, mask = mask, frame
|
| 232 |
+
|
| 233 |
mask01 = _to_mask01(mask)
|
| 234 |
|
| 235 |
try:
|
| 236 |
+
if use_matanyone is False:
|
| 237 |
+
return _simple_mask_refinement(mask01)
|
| 238 |
+
|
| 239 |
if matanyone is not None:
|
| 240 |
import torch
|
| 241 |
|
| 242 |
+
img_t = _to_tensor_chw(frame).unsqueeze(0) # (1,3,H,W)
|
| 243 |
+
mask_t = _mask_to_tensor01(mask01) # (1,1,H,W)
|
| 244 |
|
| 245 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 246 |
img_t = img_t.to(device)
|
|
|
|
| 254 |
objects=None,
|
| 255 |
first_frame_pred=True
|
| 256 |
)
|
|
|
|
| 257 |
if hasattr(matanyone, "output_prob_to_mask"):
|
| 258 |
out = matanyone.output_prob_to_mask(out)
|
| 259 |
return _tensor_to_mask01(out)
|
| 260 |
|
| 261 |
+
if hasattr(matanyone, "process"):
|
|
|
|
| 262 |
refined = matanyone.process(frame, mask01)
|
| 263 |
+
return _to_mask01(np.asarray(refined))
|
|
|
|
| 264 |
|
| 265 |
+
logger.warning("MatAnyOne provided but neither 'step' nor 'process' found.")
|
|
|
|
| 266 |
|
| 267 |
except Exception as e:
|
| 268 |
logger.warning("MatAnyOne refinement failed: %s", e)
|
|
|
|
| 272 |
# ----------------------------------------------------------------------------
|
| 273 |
# Compositing
|
| 274 |
# ----------------------------------------------------------------------------
|
| 275 |
+
def replace_background_hq(
|
| 276 |
+
frame: np.ndarray,
|
| 277 |
+
mask01: np.ndarray,
|
| 278 |
+
background: np.ndarray,
|
| 279 |
+
fallback_enabled: bool = True,
|
| 280 |
+
**_compat,
|
| 281 |
+
) -> np.ndarray:
|
| 282 |
"""
|
| 283 |
Composite frame over background using feathered mask.
|
| 284 |
Inputs:
|
| 285 |
+
- frame: (H,W,3) uint8 (BGR or RGB, linear blend anyway)
|
| 286 |
- mask01: (H,W) or (H,W,1) float32 in [0..1]
|
| 287 |
- background: (H,W,3) uint8
|
| 288 |
Returns:
|
| 289 |
+
- composited frame (H,W,3) uint8
|
| 290 |
"""
|
| 291 |
try:
|
| 292 |
H, W = frame.shape[:2]
|
| 293 |
if background.shape[:2] != (H, W):
|
| 294 |
background = cv2.resize(background, (W, H), interpolation=cv2.INTER_LANCZOS4)
|
| 295 |
|
| 296 |
+
m = _feather(_to_mask01(mask01), k=2)
|
|
|
|
| 297 |
m3 = np.repeat(m[:, :, None], 3, axis=2)
|
| 298 |
|
| 299 |
comp = frame.astype(np.float32) * m3 + background.astype(np.float32) * (1.0 - m3)
|
|
|
|
| 305 |
raise
|
| 306 |
|
| 307 |
# ----------------------------------------------------------------------------
|
| 308 |
+
# Video validation
|
| 309 |
# ----------------------------------------------------------------------------
|
| 310 |
def validate_video_file(video_path: str) -> Tuple[bool, str]:
|
| 311 |
"""
|
|
|
|
| 359 |
"replace_background_hq",
|
| 360 |
"create_professional_background",
|
| 361 |
"validate_video_file",
|
| 362 |
+
"PROFESSIONAL_BACKGROUNDS",
|
| 363 |
]
|